231HW10-F10 - (CL) /\ 2 /\ x v f i“ H 1:21:25: 9 H —t 4...

Info iconThis preview shows pages 1–17. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 12
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 14
Background image of page 15

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 16
Background image of page 17
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: (CL) /\ 2 /\ x v f i“ H 1:21:25: 9 H —t 4 I 16 4% 4.2 1144 ma 0 4 o .16 o 5.7 :5. a? M r 3 I 7 5 5'2 m "M 2 3 1,: r; 6 2'7 729 M ‘3 .7. “2 ’ 4 6 2-2 “1&8? 3%. 5mm: ‘5. :6 15 54 H I6 53.7 53.7 w;5, mzzé, Mfr—15, 3:32;”: 5%, my; 2 1/ 5m“ ‘2: (xvii); :: 2:353“— {Mfcfz 25" A 31: [9 $3511": 3? (W17) “"37 3 2&3»? ” 1.26%?51') 3‘ H“ ‘3')?“ NEW; 1' {I ’ ism: 1:; 0'5 . . I v .. 11- “ a A9 r. twagg 2%){16‘{“05)XEXE‘ :- 3151+ m W3] 7M MT JZMCYFU 52% LJ 3:37" 0535 m Jfl/(y‘r& ram/mm WWW I M] ‘5: y: 3 2n}: ~+k<md m) “WT—w' ‘;M"*:“;T 7W“, _.._..__.~.....,_-.uWm?“WW‘HNW‘MWW‘W_ N ‘ . waxwml) (/— <Y\ H) W :xflflmypv ( m"; 77H ml) ~5 : :5” EM- — .—. ~ p.944? ¥ Mm ‘nififlr’g—Mé?‘ M W28 77ml flHGC/i (my 7% 1m Mum/“1 j am! ‘53 , R : ,>:_WL-~3?)(Jvt~§)“ f __ :fi‘jwflzfyflzcu) J(:<’32-—i§->‘)-_,(,2:<.s<~3>7, [ma—52ml Mini—szx'f szo— (w P[ : say-Hme __ : “£5” (537—wa (flvé’xm 2'8 SST: ZHVJ-J‘ : 27,}- UTAH)“: 2,5 W = XML-W :- wt “mm ~ 9, mm ~ 3 03 ME 0‘3 , 25 a r = ~--~= ~-~~ M» ,/_2 i: f m i 2,8 2.5 08 9 (b) (I) fa; (Q) 35)}: 03‘ 52*— TFI-i—HE : TA 03 : 0/ / eu/m’t/‘u is w $1.2... : Liv» : 0., ' W W 6’ —~ 05 t“ 53‘, 1 0.1: ’5 ‘C'V JCj, uni/(7' H6 tom, 3 : 5‘ng I *5 < “3.182 I) v. Reject Hm M (om/maze fi,'+"0. at 5ver W) 90% two-MM CL jw m Myth {a a /\ fl. {3} i L003I5' l «- ahat arm/1y} mfg (L mg, m Uth fig?” ‘2: 2 “0.5 i 2355 X 0‘) r 0'05 , v42 WW/fil 151(7de Vfis’tfifl. U3?“ = L— 01353, ~ 01447]. HWOfai‘ pa 53>: 5J7:ng :_ [07 W3“ (2,3)"- : 0.2752 fm W 70% {mo-15M Cl jar {K2 Mtge, y [am if j WA i=4? 5)” (fioflfifi 130.95,» 5’»; : (5.7—0.5x2) 1 2-3ij 01732 = 21-71% 0.4075 = [2.2925 , 3.1075] 2" 27 :2 Nam/(07M >< HZ? :2 3/ a: oaaimt ; [18516, 55464] W ANWA jam, on vau’utzfit'c, (12f Jam 37’ Maia/65 Mm fzmw f I z , Ww MW v I» .. Kegiemm ! 2.5“ 2.3 M ~ 25 BM)?“ 3 0‘3 0‘; Tom”; L} 133 C it? if i“ ’. H m 01mg»: 1, J W )g (Damon 2 <1 mm (2/) a, # . ( ,, , . ‘ I , g (b) N0, {AL (Jimmy HMO L1 mi elhhfcafig flfflqu, (MN Wyn/mm. ) ' r 9 TM we: we: 01?, {E‘v’tahafl m, (1 Ma y“ 172mg 730W? «mm (mm am ! Will (23‘me If“? Win/{3" 701th}. F0?“ $3? (lift; F351 154i; live 0.5%! If (Jiféfom I JJ j J / J J a! , He 1 A n rm '1'” "WW " 9 t ' W 5“ [WWW «4* H mfg; fax,an8 Wet WWW] Jam»; — ( c) fee 39wa <2 HmMem IN) “1) 4.61.2590 : {500+ (5 x2500 = 5050 . . —- 0 I: : 0 (5) WWW a/wye —— We r2; /-9 v.‘ ' .i . '\ (Ci €43?wa waffle : [gale] : [30 (c2) (fig/Emmi :: ~ (09,5. = ~ {5.6) 2%? <3 (Pmfl’m N) W M2000 : Mao + fixizooo : 12900 o. 2 3:50 PM’HOGG} : Mp - : PM W) : I —~ § W4) 5,. 550 0.0453 (b) MY-zsoo : 5050 H‘Wooo) : Np z m» 0.243) !-— §(—o.)43) = 0.35; HW/o—cu-n (c) (f E[§:-h} = E[ h] - Eim] :: 505o-¥$o -: 550 w; (“fglwgu :. W i 1534f ( ’i’a} '11 3567A“? I: 245505? 3£<n~w):J§§E‘: M+w5 v<m—m>/000)=P<z> @0007659“) = (-4" WW E[L*fi1: Hfil-Hm]=0m0fwh)~Ymm+U£Q - 0— I13 Mum) # 43; («vi—x) ?(u>30 :fi<w'w>0) "P(Z> w.,, ” ) ~ V 5("m7f '1 FM We 4‘3? "[75 01:3 NIH/j HT: > wit) 3 U /1 a 455:3 \ ~13<3533J2 .w a ( wLM-s‘1m3} : m :7 w;;~;~ ,f m - / M5 at 1%: / 217‘? J 41495 311; . V 3x1 501% 4 If ...' I} -‘ w. U0? 0 u: :? {qu » i1? «- W/‘r‘zsf' Z 452%] HWUQFM <4 4 Tie, equohm «sf (12 mime? WW gm 1,3 9: 452457“? 0.0?’24~I. W Mm VFW ‘ $2 45.2457? Dawn [23; : 1.9050 (C) TM fwr MIerme Mn makian £5” [82 M" (182,0??0/2 (€622, A53), (£522, W15), was, 2.256”) 0 Kim rwregmix fryiklfxiifl' 575;” r w» 4: ~ mm; M— Mom :- — 9,076 W—Wéa : 0,954 , 2.68~Mz26z2: 0.77% 7m 37%;}??in a/fj mi: «1’3 film; I .Jm'zfi 693% Wm, (42!, m m W mo WW 3‘ Olfi/VQXM'ILJ‘," 212, @ILI'yrz/mg Wi’rflmcj: mm W; firm/[w 11m, .i/{z yzw/frm” Mm; 1.7060 \ ‘zzi/mm ; 1% [tie mm" #3 Ma? fem}; aim/m ,, iii/“WNW eflérfichij w mm mm éflgfir if; m 26L wiafééfi. (0H 53px“: zmr‘jf: :36 l \l 1 H155 ' 53E : my, Emu/p, Tum = 76.86.23 - <—/5,2%51) Mooy- aoWMzfléé %%% .- r ,2, _____ ..~»——-—»-W t: 3 R _ — m .. 1 (mm 0.45!) 2. ~fiqw =mmkfixww mm .5455 jam (O‘KM we MP to jet K2 too. fez flu; MP. M95213 XX ‘ memfl <3 (WM (M) (at) ' 11: H ) m: 3500' , Us =- 5010 ml: 213750, :crf: 220mm my; = 24/5500 m : 21ml” 7% 6130f: 7/3750 ~ fix 3300; :g (5557],? m :: ZN; '74—,(23) (23v) : 7413500 ~ #HSOM 50/0 : 232W}; ‘ H A ,_ jig” MM a - __ I l /\ —~ / - W ‘3' “'“ ’ {go : j.— Ax : 71X - 2dr X3300 - c'" 7113 {mi git/mm {zjtcfiinaie {IQ WE WWNM (“on ‘(5 3‘; #55515 + MW; 3: 45.5528 + 2‘7W225 I 33?.5I32 (C) Wm! WM: H/VM (” 50) I: ~5557 (61) N0, (K1 VII/{MC 500 [J mmm’fi 1/6; Wye 0f 0mg 35;} HQ a/Wyé’j" of Exficyofkcwbr‘b AW <6 HmMzm. M) (m Mrth 11% Wm M M viz, 7W2;ng Am. : “45.55418 Jr “WM 9 ; 125.5652, 168.3732, V #755732, 2117552, 2mm, mm /\ L m -_.. 1 mm.) : ( 250-;25.5852)L+ (2404653733‘1 (180“ 153.3732) "'+ L + (@70— 63900652.); :: )6205.% 14W? “32% 7/213 (ZWMWEIXGR fW/AMIR jfyej. ME = 2:5/6‘» fl, :yr 791mm = 22mm” (~’%-f>.55{5,)x 5m - 27/2423” #13500 : 16205.39 ‘ > I > V A . w) m: :(HHV‘ Uta-7%“); = 2207100“ W50“) = 4742357 " z __ r“ 5205.5? - ’ R — - iii-— = - 1—7?“ z: _ , I m I 9%5] 0760? “($5, {11; J7};qu {4’er YEW/WW1 MM (355% to 0/9 an WEI‘E’IW, U"C![2 . I? ' T Vb}, , 11 \ .. , <7 (a) 3; Z M. va'xg‘aizzim If; WWW W??? "a? ( WOMML { (9) 2.5 . : (1000+ isoow‘ Jr 4000) : 2500 .. 2 ‘th ’I) l a (1000“ 2500) 2- (2300 15409 3t “1" (40mm 2500f“ 7x (06 leo— W5 M " fix<2ooo+2loo + ’ ' + 3000) :1 2500 H i(w~ZV :<¢wo—%mn“%(ww-2wwa+ “ % UM0“3%W& r— IMIO‘G mm"? < 7x196 62‘ ' 02 Hme > 7x10; T/w, van’anaz gr “(9, [J Mia/[m jbr J/uz we 'WH/K. 1L 2 7' J‘O W; ' .. / , a, ., M)? EVKIH’WRC WIN; "/1, w k) ffB/fl 9K (8 (mi/{m 12.38) ; HUTth WOMWL I z '} [A670 Jfll PIEQF/IL 5;: 3 £5335 2: 1350.454 5 #2350454 = 567485 3 _, %J%5, ) :.—«-—-~ -— :— % Mi J1358?Z-? /\ T: in.” : WW —— 16721 a?) 0.0?76‘? y—vMua —'— PHtul Z Hibm.) = 22¢th z 17.15723) {Xx Mtzz 3 15000051122 J um? ”, . m—myue, < Mom}; 2 my 543w p— m’m < 0.05 P Ho: {5(30 15 V‘igrzt M 9.62? 1h Javur 2/ 1/02. «Jfl'fi’wm'b “a Hw {0‘ W6 {Ant Mx MM id» fife/Hg WW) m m 95%{1 far A (5 7M 150.025,,z- m : 2m + 2179><MW ~ [1.4 712957” for My :5 (24.10%, 17.235] 5? (a) AM jaw '53-— azn: ; A W = m- m : 4,435.7 «- £64953? =2 MW Mimhlzi 2 : JMMM f ’ "$5M? ’*’ '~= 2W3 74’. at “31:?” F“ 11“ MW!“ Ha I. MW, 2 H m, a2?‘%-75?2.) “< N w; a M) fwd/MK 4 0-001 Ho: fl, =0 55 maith W {Wt/é MW ( mm w <‘? (mi/m, 12.52) (a) 7k Jan/[mater of (Mr/est; (9, , H9: {51:0 V5 3% 5:7é0 7:132 m Jéamu’c t' :: "(2” 5’0“, E‘- Z635“ ‘r/W/O‘OQ #7 pnwfim ‘< M {10005 : ': 7OSO»—%x M02.: 45 1 Z (ylv,9\k,)z : Z Lha— /f}\0 :jt' —/(J‘\-5 : H) ” 6.4mm5325— zowswwozéi? 1" 45.36225 .a 45:92:67 ,_ K ' m ' J z = ~ 6.480313 , 5 1W I; 25456 _ 5 2556 53*fi: : 0W5 oww “ '“fi ’t'r'v‘ t7 (MA/Er fi’u V Wm}? log/55) = 2x NW xaéléfi) < A Mtflijmm) 5405 Mo} ' 4 a” f U -.,,~< KV’M Ha mag. war/he as mi W5C Tim Ham: mfiflm Lia? 35.5.. [/wa M a «av/2% Mam/5y Wm U4 {ign’ng flint) Gin/é W W&' A 75% L1 jar fit: [r fiai fawjxx; : WMfiM'tZ%M<0W& : [8.2412, mm.” WE 0cm, 5g @Mj {Wiffléfnf i m (mung X] { 913/1 ma: WM 56: Jam/em, 52% l) M ,4 Am? 12114171 VW'U J‘CCM/ dz aws’MzZ wj’W’i U/{Wyfi 2h m%4o A/mh. HW/O' 32 r pg : 382564} 1‘. 2.2557 :— (we?) 40W] m <1 for m m [34/007, 40.4121], m fi/m u 13 wier 1/133 mm]: Am 55m JW/‘fiiffify Eiinfimfjfiflg , I 55.25545: 5.01m :' [322972; #3036] r r' r 9 r i V fm (fig PL 52; bill/69X , 04% J/imzpmon u not Mmé (0 is mmmfc‘ (U — = 1 26667 W, firm:qu for J6”? 12.5? 1:):in 5}; WWW!" {Am 2/1723? iiéijfE’i’, h ‘ rr 1.. ,fl ‘ A Jami-m ( 5 . :55 U 0203?! w mflififl 05%;; (Am, 15 if}. (J; No' A M“ gt 5 '15 Wt 4%" m Wye ?£ WWW/Pg I x/w.‘,izC,, 75% w Msz M [/1521 jam: 3 Add: 95% ME” NM CI jar : st ‘2 “2%” “*7 m mowuflr? (1 jar .: [ Jj‘ , . m: J z { 5136226 - Kim , x39,“ WM 1; We] ' vaor @247 : [ Z8330, 26:54363 95 “A awe—2512!: (I; a}, fan" ,- um, mix/6 J = [/‘65512'5‘180‘1’1 W8 («6 75% WWW M: [116832, 51607] WK my?!” 14?, ‘ 6. xx HW/o- a2 » p/o HW 10 Question 1: Bivaria‘te Fi'i of Y By X “Linear Flt l f 7? Lin I Y = *x Summary of Fit // K RSquare RSquare Adj 0.857143 Root Mean Square Error 0.816228 Mean of Response 3.2 Observations (or Sum Wgts) 5 n m ‘1 VA \> Analysis of Variance Source DF Sum of Squares Mean Square F Ratio Model 1 2.5000000 2.50000 25.0000 Error 8 0.8000000 0.10000 Prob > F C. Total 4 2.8000000 0.0154* Parameter Estimates Term Estimate Std Error t Ratio Prob>|ti Intercept 3.7 0.173205 21 .36 0.0002* x -o.5 (-5.09 0.0154* n 'n 53 t i Question 2: Problem 12.1: b. A scatter plot of the data appears below. The points exhibit quite a bit of variation and do not appear to fall close to any straight line or simple curve. Bivariate Fit of Y By X Problem 12.4: Bivariate Fit of Y By X Linear Fit Y = -1 5.24497 + 0.0942361 *x Summary of Fit RSquare 0.451398 RSquare Adj 0.426461 Root Mean Square Error 0.497245 Mean of Response 1 .670417 Observations (or Sum Wgts) 24 Anaiysis of Variance Source DF Sum of Squares Mode! 1 4.4757441 Error 22 5.4395517 C. Total 23 9.9152958 Parameter Estimates 5 Term Estimate Std Error intercept -15.24497 3.977048 X 0.0942361 0.022149 Problem 12.52: Bivariate Fit of Y By X Linear Fit Y = 6.4487179 + 10.602564*X Summary of Fit Mean Square 4.47574 0.24725 1 Ratio -3.83 4.25 RSquare 0.941548 RSquare Adj 0.933197 Root Mean Square Error 2.545646 Mean of Response 34.72222 Observations (or Sum ngs) 9 Analysis of Variance Source DF Sum of Squares Mean Square F Ratio 18.1019 Prob > F 00003" Prob>it| 0.0009* 0.0003* F Ratio Source DF Sum of Squares Mean Square F Ratio Model 1 730.69338 730.693 112.7559 Error 7 45.36218 6.480 Prob > F C. Total 8 77605556 <.0001* Parameter Estimates Term Estimate Std Error t Ratio Prob>|tl intercept 6.4487179 2.794567 2.31 0.0544 X . 10.602564 0.998484 10.62 <.0001 * ...
View Full Document

This note was uploaded on 02/11/2012 for the course STAT 231 taught by Professor Staff during the Fall '08 term at Iowa State.

Page1 / 17

231HW10-F10 - (CL) /\ 2 /\ x v f i“ H 1:21:25: 9 H —t 4...

This preview shows document pages 1 - 17. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online