c173c273_lec16_w11[1]

c173c273_lec16_w11[1] - University of California, Los...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: University of California, Los Angeles Department of Statistics Statistics C173/C273 Instructor: Nicolas Christou Block kriging exampe We will use the 7-point data from earlier lectures. Here they are: s i x y z ( s i ) s 1 61 139 477 s 2 63 140 696 s 3 64 129 227 s 4 68 128 646 s 5 71 140 606 s 6 73 141 791 s 7 75 128 783 Here is the x- y plot: 62 64 66 68 70 72 74 128 130 132 134 136 138 140 x coordinate y coordinate s1 s2 s3 s4 s5 s6 s7 A B C D For these data, lets assume that we use the exponential semivariogram model with parameters c = 0 ,c 1 = 10 , = 3 . 33, ( h ) = 10(1- e- h 3 . 33 ). The corresponding covariance function is: C ( h ) = ( 10 h = 0 10 e- h 3 . 33 h > 1 Suppose we want to estimate the average of the block defined by the coordinates shown on the figure of page 1: (64 , 132) , (64 , 138) , (70 , 132) , (70 , 138) (see figure on page 1). One way to do this is to krige many points inside the block and at the end average these esti- mates. Lets use only 4 points inside the block defined by the following coordinates: A (66 , 134) ,B (66 , 136) ,C (68 , 134) ,D (68 , 136). Predicting point A: W = 10 5 . 103 0 . 435 0 . 199 0 . 489 0 . 259 0 . 048 1 5 . 103 10 0 . 362 0 . 202 0 . 905 0 . 489 0 . 061 1 . 435 0 . 362 10 2 . 902 0 . 199 0 . 111 0 . 362 1 . 199 0 . 202 2 . 902 10 0 . 244 0 . 152 1 . 222 1 . 489 0 . 905 0 . 199 0 . 244 10 5 . 103 0 . 224 1 . 259 0 . 489 0 . 111 0 . 152 5 . 103 10 0 . 193 1 . 048 0 . 061 0 . 362 1 . 222 0 . 224 0 . 193 10 1 1 1 1 1 1 1 1 0 - 1 1 . 196 1 . 334 1 . 985 1 . 497 . 958 . 512 . 388 1 = . 130 . 146 . 240 . 164 . 136 . 072 . 112- 1 . 077 . Therefore, z ( s A ) = 0 . 130(477)+0 . 146(696)+0 . 240(227)+0 . 164(646)+0 . 136(606)+0 . 072(791)+0 . 112(783) z ( s A ) = 551 . 036. Predicting point B: W = 10 5 . 103 0 . 435 0 . 199 0 . 489 0 . 259 0 . 048 1 5 . 103 10 0 . 362 0 . 202 0 . 905 0 . 489 0 . 061 1 . 435 0 . 362 10 2 . 902 0 . 199 0 . 111 0 . 362 1 . 199 0 . 202 2...
View Full Document

Page1 / 5

c173c273_lec16_w11[1] - University of California, Los...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online