HW6 - ECE 302 Homework#6 due date...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ECE 302, Homework #6, due date: 2/23/2011 http://cobweb.ecn.purdue.edu/ ∼ chihw/11ECE302S/11ECE302S.html Review of Calculus: The chain rule. Question 1: Consider the following functions. F ( x ) = Z x f ( s ) ds g ( x ) = F ( h ( x )) = Z h ( x ) f ( s ) ds Express d dx F ( x ) and d dx g ( x ) using f ( x ) and h ( x ). Question 2: [Intermediate/Exam Level] (Compare it with HW4Q1). Consider a continu- ous random variable X with the following pdf f X ( x ): f X ( x ) = 1 . 5 e- 3 | x | for all x (1) Consider a discrete “quantizer” Y of the magnitude of X as follows. For any X , if k ≤ | X | < k + 1, then Y = k . For example, if the X value is- π , then Y = 3 since 3 ≤ | - π | < 4. If the X value is 1 . 25, then Y = 1. Find the pmf of the discrete variable Y . Namely, find P ( Y = k ) for k = 0 , 1 , 2 ··· . What type of random variables is Y ? Question 3: [Intermediate/Exam Level] Let X = Y 1 + Y 2 + ··· + Y n be a binomial random variable that results from the summation of n independent Bernoulli random variables Y 1 to Y n . The success probability of Y i is p for i...
View Full Document

{[ snackBarMessage ]}

Page1 / 3

HW6 - ECE 302 Homework#6 due date...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online