This preview shows page 1. Sign up to view the full content.
Unformatted text preview: UCSD Physics 12 Work and Energy
The physical description of energy UCSD Physics 12 Energy: the capacity to do work This notion makes sense even in a colloquial context: hard to get work done when you're wiped out (low on energy) work makes you tired: you've used up energy But we can make this definition of energy much more precise by specifying exactly what we mean by work Spring 2010 2 UCSD Physics 12 Work: more than just unpleasant tasks In physics, the definition of work is the application of a force through a distance W = Fd W is the work done F is the force applied d is the distance through which the force acts Only the force that acts in the direction of motion counts towards work
3 Spring 2010 UCSD Physics 12 Okay, what is Force, then Force is a pushing/pulling agent Examples: gravity exerts a downward force on you the floor exerts an upward force on a ball during its bounce a car seat exerts a forward force on your body when you accelerate forward from a stop the seat you're sitting in now is exerting an upward force on you (can you feel it?) you exert a sideways force on a couch that you slide across the floor a string exerts a centrallydirected (centripetal) force on a rock at the end of a string that you're twirling over your head the expanding gas in your car's cylinder exerts a force against the piston Spring 2010 4 UCSD Physics 12 Forces have Direction In all the previous examples, force had a direction associated with it If multiple forces act on an object, they could potentially add or cancel, depending on direction
Total Force Force #1 Total Force = 0 Force #2 Force #2 Force #1 Spring 2010 5 UCSD Physics 12 When net force is not zero When an object experiences a nonzero net force, it must accelerate Newton's second law: F = ma Force = mass times acceleration The same force makes a small object accelerate more than it would a more massive object hit a golf ball and a bowling ball with a golf club and see what happens Spring 2010 6 UCSD Physics 12 Yeah, but what is acceleration, exactly This is getting to be like the "hole in the bucket" song, but we're almost there... Acceleration is any change in velocity (speed and/or direction of motion) Measured as rate of change of velocity velocity is expressed in meters per second (m/s) acceleration is meters per second per second expressed as m/s2 (meters per secondsquared) Spring 2010 7 UCSD Physics 12 Putting it back together: Units of Energy Force is a mass times an acceleration mass has units of kilograms acceleration is m/s2 force is then kgm/s2, which we call Newtons (N) Work is a force times a distance units are then (kgm/s2)m = kg m2/s2 = Nm = Joules (J) One Joule is one Newton of force acting through one meter Imperial units of force and distance are pounds and feet, so unit of energy is footpound, which equals 1.36 J Energy has the same units as work: Joules
Spring 2010 8 UCSD Physics 12 A Zoo of Units Our main unit of energy will be the metric unit of the Joule, but many others exist: The calorie is 4.184 Joules raise 1 gram (c.c.) of water one degree Celsius The Calorie (kilocalorie) is 4,184 J raise 1 kg (1 liter) of water one degree Celsius The Btu (British thermal unit) is 1,055 J (roughly 1 kJ) raise 1 pound of water one degree Fahrenheit The kilowatthour (kWh) is 3,600,000 J one Watt (W) is one Joule per second a kWh is 1,000 W for one hour (3,600 seconds) Spring 2010 Q 9 UCSD Physics 12 A note on arithmetic of units You should carry units in your calculations and multiply and divide them as if they were numbers Example: the force of air drag is given by: Fdrag = cDAv2 cD is a dimensionless drag coefficient is the density of air, 1.3 kg/m3 A is the crosssectional area of the body in m2 v is the velocity in m/s kgm2m2 units: (kg/m3)(m2)(m/s)2 = (kgm2/m3) (m2/s2) = m3s2 kgm4 = m3s2 = kgm/s2 = Newtons Spring 2010 10 UCSD Physics 12 Kinetic Energy Kinetic Energy: the energy of motion Moving things carry energy in the amount: K.E. = mv2 Note the v2 dependencethis is why: a car at 60 mph is 4 times more dangerous than a car at 30 mph hurricaneforce winds at 100 mph are much more destructive (4 times) than 50 mph galeforce winds a bullet shot from a gun is at least 100 times as destructive as a thrown bullet, even if you can throw it a tenth as fast as you could shoot it Spring 2010 11 UCSD Physics 12 Numerical examples of kinetic energy A baseball (mass is 0.145 kg = 145 g) moving at 30 m/s (67 mph) has kinetic energy:
K.E. = (0.145 kg) (30 m/s)2 = 65.25 kgm2/s2 65 J A quarter (mass = 0.00567 kg = 5.67 g) flipped about four feet into the air has a speed on reaching your hand of about 5 m/s. The kinetic energy is:
K.E. = (0.00567 kg) (5 m/s)2 = 0.07 kgm2/s2 = 0.07 J Spring 2010 12 UCSD Physics 12 More numerical examples A 1500 kg car moves down the freeway at 30 m/s (67 mph)
K.E. = (1500 kg) (30 m/s)2 = 675,000 kgm2/s2 = 675 kJ A 2 kg (~4.4 lb) fish jumps out of the water with a speed of 1 m/s (2.2 mph) K.E. = (2 kg) (1 m/s)2
= 1 kgm2/s2 = 1 J Spring 2010 2 Q 13 UCSD Physics 12 It takes work to lift a mass against the pull (force) of gravity The force of gravity is mg, where m is the mass, and g is the gravitational acceleration
F = mg (note similarity to F = ma) g = 9.8 m/s2 on the surface of the earth g 10 m/s2 works well enough for this class Gravitational Potential Energy Lifting a height h against the gravitational force requires an energy input (work) of: E = W = F h = mgh Rolling a boulder up a hill and perching it on the edge of a cliff gives it gravitational potential energy that can be later released when the roadrunner is down below. Spring 2010 14 UCSD Physics 12 First Example of Energy Exchange When the boulder falls off the cliff, it picks up speed, and therefore gains kinetic energy Where does this energy come from?? from the gravitational potential energy The higher the cliff, the more kinetic energy the boulder will have when it reaches the ground
mgh becomes h Energy is conserved, so mv2 = mgh Can even figure out v, since v2 = 2gh mv2 Spring 2010 15 UCSD Physics 12 Examples of Gravitational Potential Energy How much gravitational potential energy does a 70 kg highdiver have on the 10 meter platform?
mgh = (70 kg) (10 m/s2) (10 m) = 7,000 kgm2/s2 = 7 kJ How massive would a book have to be to have a potential energy of 40 J sitting on a shelf two meters off the floor?
mgh = m (10 m/s2) (2 m) = 40 J so m must be 2 kg Spring 2010 2 Q 16 UCSD Physics 12 The Energy of Heat Hot things have more energy than their cold counterparts Heat is really just kinetic energy on microscopic scales: the vibration or otherwise fast motion of individual atoms/molecules Even though it's kinetic energy, it's hard to derive the same useful work out of it because the motions are random Heat is frequently quantified by calories (or Btu) One calorie (4.184 J) raises one gram of H2O 1C One Calorie (4184 J) raises one kilogram of H2O 1C One Btu (1055 J) raises one pound of H2O 1F Spring 2010 17 UCSD Physics 12 Energy of Heat, continued Food Calories are with the "big" C, or kilocalories (kcal) Since water has a density of one gram per cubic centimeter, 1 cal heats 1 c.c. of water 1C, and likewise, 1 kcal (Calorie) heats one liter (1 kg) of water 1C these are useful numbers to hang onto Example: to heat a 2liter bottle of Coke from the 5C refrigerator temperature to 20C room temperature requires 30 Calories, or 122.5 kJ
Spring 2010 18 UCSD Physics 12 Heat Capacity Different materials have different capacities for heat Add the same energy to different materials, and you'll get different temperature rises Quantified as heat capacity Water is exceptional, with 4,184 J/kg/C Most materials are about 1,000 J/kg/C (including wood, air, metals) Example: to add 10C to a room 3 meters on a side (cubic), how much energy do we need?
air density is 1.3 kg/m3, and we have 27 m3, so 35 kg of air; and we need 1000 J per kg per C, so we end up needing 350,000 J (= 83.6 Cal) Spring 2010
2 Q 19 UCSD Physics 12 Power Power is simply energy exchanged per unit time, or how fast you get work done (Watts = Joules/sec) One horsepower = 745 W Perform 100 J of work in 1 s, and call it 100 W Run upstairs, raising your 70 kg (700 N) mass 3 m (2,100 J) in 3 seconds 700 W output! Shuttle puts out a few GW (gigawatts, or 109 W) of power! Spring 2010 20 UCSD Physics 12 Power Examples How much power does it take to lift 10 kg up 2 meters in 2 seconds?
mgh = (10 kg) (10 m/s2) (2 m) = 200J 200 J in 2 seconds 100 Watts If you want to heat the 3 m cubic room by 10C with a 1000 W space heater, how long will it take?
We know from before that the room needs to have 360,000 J added to it, so at 1000 W = 1000 J/s this will take 360 seconds, or six minutes. But: the walls need to be warmed up too, so it will actually take longer (and depends on quality of insulation, etc.) Spring 2010
2 Q 21 UCSD Physics 12 Getting to know the Watt How much energy does a 100 W light bulb use? what does 100 W mean? it's a rate of energy expenditure does 100 W per second, per minute, etc. make sense? this would be an acceleration of energy use answer depends on time the light bulb is on 100 W bulb uses 100 J/s or 6,000 J per minute; 360,000 J/hr Think of power as something measured by a speedometer a rate of usage And energy as the odometer measurement the amount used Spring 2010 22 UCSD 3W Examples of Power, in Watts
200 W Physics 12 100 W 5000 W 20 W 1000 W 1800 W 40 W (100 W incand. equiv.)
heating 23 of power lots Spring 2010 1500 W UCSD Physics 12 The kilowatthour We will often see the kilowatthour (kWh) as a unit of... ...Energy 1 kWh is a power times a time energy 1000 W (kW) for one hour 1 hr = 3600 sec 1 kWh = 3,600,000 J = 3.6 MJ 1 W for 1000 hours 100 W for 10 hours 2000 W for 30 minutes 3.6 MW for one second so a 100 W bulb left on for a day is 2.4 kWh
Spring 2010 24 UCSD Physics 12 Assignments Read Chapter 1 and Appendix in textbook Homework #1 due April 9 in class: Chapter 1 inspired problems: see website under assignments for problems Spring 2010 25 ...
View
Full
Document
 Fall '10
 Staff
 Physics, Energy, Work

Click to edit the document details