Unformatted text preview: Optics Intro
Geometric Optics Raytracing UCSD: Physics 121; 2012 Reflection We describe the path of light as straightline rays "geometrical optics" approach Reflection off a flat surface follows a simple rule: angle in (incidence) equals angle out angles measured from surface "normal" (perpendicular) surface normal incident ray same angle exit ray Winter 2012 2 UCSD: Physics 121; 2012 Reflection, continued Also consistent with "principle of least time" If going from point A to point B, reflecting off a mirror, the path traveled is also the most expedient (shortest) route A
too long shortest path; equal angles B Winter 2012 3 UCSD: Physics 121; 2012 Hall Mirror Useful to think in terms of images "real" you mirror only needs to be half as high as you are tall. Your image will be twice as far from you as the mirror.
Winter 2012 "image" you 4 UCSD: Physics 121; 2012 Curved mirrors What if the mirror isn't flat? light still follows the same rules, with local surface normal Parabolic mirrors have exact focus used in telescopes, backyard satellite dishes, etc. also forms virtual image Winter 2012 5 UCSD: Physics 121; 2012 Refraction Light also goes through some things glass, water, eyeball, air The presence of material slows light's progress interactions with electrical properties of atoms The "light slowing factor" is called the index of refraction glass has n = 1.52, meaning that light travels about 1.5 times slower in glass than in vacuum water has n = 1.33 air has n = 1.00028 vacuum is n = 1.00000 (speed of light at full capacity) Winter 2012 6 UCSD: Physics 121; 2012 Refraction at a plane surface Light bends at interface between refractive indices bends more the larger the difference in refractive index can be effectively viewed as a "least time" behavior get from A to B faster if you spend less time in the slow medium A Snell's Law: n1sin1 = n2sin2 n1 = 1.0 n2 = 1.5 1 2 B
Winter 2012 7 Driving Analogy UCSD: Physics 121; 2012 Let's say your house is 12 furlongs off the road in the middle of a huge field of dirt you can travel 5 furlongs per minute on the road, but only 3 furlongs per minute on the dirt this means "refractive index" of the dirt is 5/3 = 1.667 Starting from point A, you want to find the quickest route: straight across (AD)don't mess with the road rightangle turnoff (ACD)stay on road as long as possible angled turnoff (ABD)compromise between the two
A road dirt D (house) B C AD: 6.67 minutes ABD: 6.0 minutes: the optimal path is a "refracted" one ACD: 7.2 minutes
Winter 2012 leg AB AC AD BD CD dist. 5 16 20 15 12 [email protected] 1 3.2    [email protected]   6.67 5 4 Note: both right triangles in figure are 345 8 UCSD: Physics 121; 2012 Total Internal Reflection At critical angle, refraction no longer occurs thereafter, you get total internal reflection n2sin2 = n1sin1 crit = sin1(n1/n2) for glass, the critical internal angle is 42 for water, it's 49 a ray within the higher index medium cannot escape at shallower angles (look at sky from underwater...) incoming ray hugs surface n1 = 1.0 n2 = 1.5 42 Winter 2012 9 UCSD: Physics 121; 2012 Refraction in Suburbia Think of refraction as a pair of wheels on an axle going from sidewalk onto grass wheel moves slower in grass, so the direction changes Note that the wheels move faster (bigger space) on the sidewalk, slower (closer) in the grass Winter 2012 10 UCSD: Physics 121; 2012 Even gets Total Internal Reflection Right Moreover, this analogy is mathematically equivalent to the actual refraction phenomenon can recover Snell's law: n1sin1 = n2sin2 Wheel that hits sidewalk starts to go faster, which turns the axle, until the upper wheel reenters the grass and goes straight again Winter 2012 11 UCSD: Physics 121; 2012 Reflections, Refractive offset Let's consider a thick piece of glass (n = 1.5), and the light paths associated with it reflection fraction = [(n1 n2)/(n1 + n2)]2 using n1 = 1.5, n2 = 1.0 (air), R = (0.5/2.5)2 = 0.04 = 4% n1 = 1.5 n2 = 1.0 image looks displaced due to jog incoming ray (100%) 96% 8% reflected in two reflections (front & back) 4% 92% transmitted 4%
Winter 2012 0.16%
12 UCSD: Physics 121; 2012 Let's get focused... Just as with mirrors, curved lenses follow same rules as flat interfaces, using local surface normal
A lens, with front and back curved surfaces, bends light twice, each diverting incoming ray towards centerline. Follows laws of refraction at each surface. Parallel rays, coming, for instance from a specific direction (like a distant bird) are focused by a convex (positive) lens to a focal point. Placing film at this point would record an image of the distant bird at a very specific spot on the film. Lenses map incoming angles into positions in the focal plane.
Winter 2012 13 UCSD: Physics 121; 2012 Cameras, in brief
object pinhole image at film plane In a pinhole camera, the hole is so small that light hitting any particular point on the film plane must have come from a particular direction outside the camera object image at film plane lens In a camera with a lens, the same applies: that a point on the film plane moreorless corresponds to a direction outside the camera. Lenses have the important advantage of collecting more light than the pinhole admits
Winter 2012 14 UCSD: Physics 121; 2012 Positive Lenses Thicker in middle Bend rays toward axis Form real focus Winter 2012 15 UCSD: Physics 121; 2012 Negative Lenses Thinner in middle Bend rays away from the axis Form virtual focus Winter 2012 16 UCSD: Physics 121; 2012 Raytracing made easier In principle, to trace a ray, one must calculate the intersection of each ray with the complex lens surface, compute the surface normal here, then propagate to the next surface computationally very cumbersome We can make things easy on ourselves by making the following assumptions: all rays are in the plane (2d) each lens is thin: height does not change across lens each lens has a focal length (real or virtual) that is the same in both directions Winter 2012 17 UCSD: Physics 121; 2012 Thin Lens Benefits If the lens is thin, we can say that a ray through the lens center is undeflected real story not far from this, in fact: direction almost identical, just a jog the jog gets smaller as the lens gets thinner Winter 2012 18 UCSD: Physics 121; 2012 Using the focus condition
real foci virtual foci s= s' = f s= s' = f s=f s' = s = f s' = s= s' = f s= s' = f Winter 2012 19 UCSD: Physics 121; 2012 Tracing an arbitrary ray (positive lens) 1. 2. 3. 4. draw an arbitrary ray toward lens stop ray at middle of lens note intersection of ray with focal plane from intersection, draw guiding (helper) ray straight through center of lens (thus undeflected) 5. original ray leaves lens parallel to helper
why? because parallel rays on one side of lens meet each other at the focal plane on the other side Winter 2012 20 UCSD: Physics 121; 2012 Tracing an arbitrary ray (negative lens) 1. 2. 3. draw an arbitrary ray toward lens stop ray at middle of lens draw helper ray through lens center (thus undeflected) parallel to the incident ray 4. note intersection of helper with focal plane 5. emerging ray will appear to come from this (virtual) focal point
why? parallel rays into a negative lens appear to diverge from the same virtual focus on the input side Winter 2012 21 UCSD: Physics 121; 2012 Image Formation Place arrow (object) on left, trace through image: 1) along optical axis (no defl.); 2) parallel to axis, goes through far focus with optical axis ray; 3) through lens center; 4) through nearside focus, emerges parallel to optical axis; 5) arbitrary ray with helper Note convergence at image position (smaller arrow) could run backwards just as well
Winter 2012 22 UCSD: Physics 121; 2012 Notes on Image Formation Note the following: image is inverted image size proportional to the associated svalue: ray 3 proves it both s and s' are larger than f (s = 120; s' = 80; f = 48) Gaussian lens formula (simple form):
Winter 2012 23 UCSD: Physics 121; 2012 Virtual Images If the object is inside the focal length (s < f): a virtual (and larger) image is formed noninverted Ray numbers are same procedure as previous This time s' is negative: s = 40; f = 60; s' = 120 negative image distances indicate virtual images
Winter 2012 24 UCSD: Physics 121; 2012 The lensmaker's formula We saw the Gaussian lens formula before: f is positive for positive lenses, negative for negative lenses s is positive on left, s' is positive on right But in terms of the surface properties: R1 is for the left surface (pos. if center of curvature to right) R2 is for right surface (pos. if center of curvature to right) biconvex (as in prev. examples) has R1 > 0; R2 < 0 n is the refractive index of the material (assume in air/vac)
Winter 2012 25 UCSD: Physics 121; 2012 Deriving Gaussian Formula from Rays Object has height, h; image height = h' tangent of ray 3 angle is h/s, so h' = h(s'/s) ray 2 angle is h/f, so h' = (h/f) (s'  f) set the two expressions for h' equal, and divide by hs' the result will pop out can do the same trick using virtual images too
Winter 2012 26 UCSD: Physics 121; 2012 Lenses map directions into displacements Two objects at infinity an angle apart produce distinct spots separated by following geometry, = ftan f for small hint: look at central rays so lens turns angle () into displacement () Winter 2012 27 UCSD: Physics 121; 2012 Telescope A telescope has an "objective" lens and an eyepiece sharing a focal plane; giving the eye the parallel light it wants Everything goes as ratio of focal lengths: f1/f2 magnification is just M = 2/1 = f1/f2 after all: magnification is how much bigger things look displacement at focal plane, = f11 = f22 relation above ratio of collimated beam (pupil) sizes: P1/P2 = f1/f2 = M Winter 2012 28 UCSD: Physics 121; 2012 Reflector/Refractor Analogy For the purposes of understanding a reflecting system, one may replace with lenses (which we know how to trace/analyze) focal length and aperture the same; rays on other side for a reflector, f = R/2 [compare to 1/f = (n  1)(1/R1  1/R2) for lens] for n = 1.5, R2 = R1 (symmetric lens), f = R so glass lens needs twice the curvature of a mirror Winter 2012 29 UCSD: Physics 121; 2012 Parabolic Example
Take the parabola: y = x2 Slope is y' = 2x Curvature is y'' = 2 So R = 1/y'' = 0.5 Slope is 1 (45) at: x = 0.5; y = 0.25 So focus is at 0.25: f = R/2 Note that pathlength to focus is the same for depicted ray and one along x = 0
Winter 2012 30 UCSD: Physics 121; 2012 Cassegrain Telescope A Cassegrain telescope can be modeled as as positive and negative lens eyepiece not shown: only up to focus Final focus depends on placement of negative lens if s = f2, light is collimated; if s > f2, light will diverge both s and f2 are negative For the Apache Point 3.5 meter telescope, for example: f1 = 6.12 m; f2 = 1.60 m; d12 = 4.8 m; s = d12  f1 = 1.32 m yields s' = 7.5 m using 1/s + 1/s' = 1/f2 Winter 2012 31 UCSD: Physics 121; 2012 Cassegrain focus Abstracting mirrors as lenses, then lenses as sticks: trace central ray with angle 1 figure out 2 and then focal length given s' and d12 y2 = d121 (adopt convention where 1 is negative as drawn) y1 = f21 (f2 is negative: negative lens) 2 = (y1  y2)/f2 = 1(f2  d12)/f2 yf = y2 + 2s' = 1(d12 + s'(f2  d12)/f2) feff = d12 + s'(f2  d12)/f2 = f1s'/s after lots of algebra for Apache Point 3.5 meter, this comes out to 35 meters
Winter 2012 32 UCSD: Physics 121; 2012 fnumbers
f=D D f/1 beam: "fast" D f/4 beam: "slow" f = 4D The fnumber is a useful characteristic of a lens or system of lenses/mirrors Simply = f/D where f is the focal length, and D is the aperture (diameter) "fast" converging beams (low fnumber) are optically demanding to make without aberrations "slow" converging beams (large fnumber) are easier to make aberrations are proportional to 1/2 so pay the price for going "fast" Winter 2012 33 UCSD: Physics 121; 2012 fnumbers, compared Lens curvature to scale for n = 1.5 obviously slow lenses are easier to fabricate: less curvature Winter 2012 34 UCSD: Physics 121; 2012 Pupils Consider two "field points" on the focal plane e.g., two stars some angle apart The rays obviously all overlap at the aperture called the entrance pupil The rays are separate at the focus (completely distinct) Then overlap again at exit pupil, behind eyepiece want your pupil here just an image of the entrance pupil satisfying 1/s' + 1/(f1 + f2) = 1/f2 size is smaller than entrance pupil by magnification factor M = f1/f2; in this picture, f1 = 48; f2 = 12; M = 4; s' = 15 Winter 2012 35 UCSD: Physics 121; 2012 Pupils within Pupils Looking at three stars (red, green, blue) through telescope, eye position is important So is pupil size compared to eye pupil dark adapted pupil up to 7 mm diameter (23 mm in daylight) sets limit on minimum magnification (if you want to use the full aperture) 210 mm aperture telescope must have M > 30 for f/5 scope, means f2 < 35 mm; f/10 scope means f2 < 70 mm 3.5m scope means M > 500; at f/10, f2 < 70 mm Winter 2012 36 UCSD: Physics 121; 2012 Vignetting Rays that don't make it through an optical system are said to be vignetted (shadowed) maybe a lens isn't big enough maybe your eye's pupil isn't big enough, or is improperly placed Often appears as a gradual darkening as a function of distance from the field center the farther out you go, the bigger your lenses need to be every optical system has a limited (unvignetted) field of view beyond this, throughput goes down Winter 2012 37 UCSD: Physics 121; 2012 Infrared Cold Stop An infrared detector is very sensitive to terrestrial heat so want to keep off of detector if detector located at primary focal plane, it is inundated with emission from surroundings and telescope structure note black lines intersecting primary focal plane Putting a "cold" stop at a pupil plane eliminates stray emission cool to LN2; image of primary objective onto cold stop only light from the primary passes through; detector focal plane then limits field of view to interesting bit Also the right place for filters, who prefer collimated light
38 Winter 2012 UCSD: Physics 121; 2012 Raytrace Simulations In Google, type in: phet top link is one to University of Colorado physics education page on this page, click: go to simulations on the lefthand bar, go to: light and radiation then click the geometric optics simulation link (picture) Can play with lots of parameters real and virtual images lens radius of curvature, diameter, and refractive index see principle rays (ones you'd use to raytrace) see marginal rays use a light source and screen see the effect of two sources
39 Winter 2012 UCSD: Physics 121; 2012 Aberrations: the real world Lenses are thick, sin sin  3/6 + 5/120  7/5040 + ... tan + 3/3 + 25/15 + 177/315 + ... spherical aberration all spherical lenses possess; parabolic reflector does not Different types of aberration (imperfection) coma offaxis ailment: even aspheric elements have this chromatic aberration in refractive systems only: refractive index is function of astigmatism if on axis, then lens asymmetry; but can arise offaxis in any system field curvature/distortion detectors are flat: want to eliminate significant field curvature
Winter 2012 40 UCSD: Physics 121; 2012 Spherical Aberration Rays at different heights focus at different points Makes for a mushy focus, with a halo Positive spherical lenses have positive S.A., where exterior rays focus closer to lens Negative lenses have negative S.A., as do plates of glass in a converging beam "Overcorrecting" a positive lens (going too far in making asphere) results in neg. S.A. neg. S.A. lens side zero S.A. pos. S.A. Winter 2012 41 UCSD: Physics 121; 2012 Coma Offaxis rays meet at different places depending on ray height Leads to asymmetric image, looking something like a comet (with nucleus and flared tail) thus the name coma As with all aberrations, gets worse with "faster" lenses Exists in parabolic reflectors, even if no spherical aberration Winter 2012 42 UCSD: Physics 121; 2012 Chromatic Aberration Glass has slightly different refractive index as a function of wavelength so not all colors will come to focus at the same place leads to colored blur why a prism works Fixed by pairing glasses with different dispersions (dn/d) typically a positive lens of one flavor paired with a negative lens of the other can get cancellation of aberration also helps spherical aberration to have multiple surfaces (more design freedom) Winter 2012 43 UCSD: Physics 121; 2012 Optical Alignment Techniques The performance of an optical system often depends vitally on careful positioning of the optical elements A stepwise approach is best, if possible: aligning as the system is built up if using a laser, first make sure the beam is level on the table, and going straight along the table install each element in sequence, first centering the incident beam on the element often reflections from optical faces can be used to judge orientation (usually should roughly go back toward source) a lens converts position to direction, so careful translation crosswise to beam is important orientation is a secondorder concern Whenever possible, use a little telescope to look through system: the eye is an excellent judge
Winter 2012 44 UCSD: Physics 121; 2012 Zemax Examples Winter 2012 45 UCSD: Physics 121; 2012 Lab 4: Raytracing While it may not be Zemax, I've cobbled together a Cprogram to do raytracing of any number of lenses restricted to the following conditions: ray path is sequential: hitting surfaces in order defined ray path is lefttoright only: no backing up elements are flat or have conic surfaces refractive index is constant, and ignorant of dispersion We will use this package to: analyze simple lens configurations look at aberrations build lens systems (beam expanders, telescopes) learn how to compile and run C programs (and modify?) in conjunction with some geometrical design Winter 2012 46 UCSD: Physics 121; 2012 Raytracing Algorithm Detailed math available on website under Lab Info Basically, compute intersection of ray with surface, then apply Snell's Law Can have as many surfaces as you want! Must only take care in defining physical systems e.g., make sure lens is thick enough for the diameter you need
Winter 2012 47 UCSD: Physics 121; 2012 References and Assignments Optics, by Eugene Hecht a most excellent book: great pictures, clear, complete Text reading (see assignments page for sections): Ray Tracing; Paraxial Ray Tracing; other topics of interest Apertures, Stops, Pupils; Vignetting Geometrical Aberrations & skim 5 types thereof Simple and Gal. Telescopes; Laser beam expanders & spatial filters; Lens aberrations Flip through rest of chapter 4 to learn what's there Lab Prep: read raytrace.pdf on raytrace algorithm Winter 2012 48 ...
View
Full Document
 Fall '10
 Staff
 Physics, Light, Geometrical optics

Click to edit the document details