Lect31 - Physics 101: Lecture 31 Thermodynamics, part 2 q q...

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
Physics 101: Lecture 31, Pg 1 Physics 101: Physics 101: Lecture 31 Lecture 31 Thermodynamics, part 2 Thermodynamics, part 2 Review of 1st law of thermodynamics 2nd Law of Thermodynamics Engines and Refrigerators The Carnot Cycle      
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Physics 101: Lecture 31, Pg 2 Quick Review Quick Review 1st Law of Thermodynamics: energy conservation Q   U + W Heat flow  into  (or out of) system Increase  (or decrease) in internal energy of system Work done by  (or on) system V P   U depends only on T  (U = 3nRT/2 = 3PV/2)  Point on P-V plot completely specifies     state of system  (PV = nRT)  work done is area under curve  for complete cycle U=0   Q=W
Background image of page 2
Physics 101: Lecture 31, Pg 3 Second Law of Thermodynamics Second Law of Thermodynamics Not all processes that are allowed by energy conservation occur in nature. Why ? Example: Stone falls from height h:  mgh -> ½ m v 2  (just before impact) -> heat  (contact with floor) This process is consistent with energy conservation. The reversed process:  Stone lying on floor cools down and moves upward to height h,  has never been observed in nature, although it is also allowed by  energy conservation:  Q->1/2 mv 2 ->mgh  Or: Ice melts but water does not spontaneously freeze, heat flows from hot to cold but never from cold to hot.  We need a new concept which makes these (reversed) processes       highly unlikely.
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Physics 101: Lecture 31, Pg 4 New concept: Entropy (S) New concept: Entropy (S) A measure of “disorder” or probability of state of a system. A property of a system (=state function, just like P, V, T, U) related to number of different “states” of system Examples of increasing entropy: ice cube melts gases expand into vacuum Change in entropy: S = Q/T  (T in K !)     SI unit: [J/K] » >0 if heat flows into system (Q>0) » <0 if heat flows out of system (Q<0)
Background image of page 4
Physics 101: Lecture 31, Pg 5 Reversible vs. Irreversible changes in a thermodynamic system: Reversible vs. Irreversible changes in a thermodynamic system: Reversible changes are conceived to be those that would occur very
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 6
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 15

Lect31 - Physics 101: Lecture 31 Thermodynamics, part 2 q q...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online