# Approx - CSE 4101/5101 Prof Andy Mirzaian Approximation...

This preview shows pages 1–10. Sign up to view the full content.

CSE 4101/5101 Approximation Algorithms for NP-hard Optimization Problems Prof. Andy Mirzaian

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
References: [CLRS] chapter 35 Lecture Notes 9, 10 AAW Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, "Algorithms,“ McGraw-Hill, 2008. Jon Kleinberg and Eva Tardos, "Algorithm Design," Addison Wesley, 2006. Vijay Vazirani , Approximation Algorithms ,” Springer, 2001. Dorith Hochbaum (editor), "Approximation Algorithms for NP-Hard Problems," PWS Publishing Company, 1997. Michael R. Garey, David S. Johnson, "Computers and Intractability: A Guide to the Theory of NP-Completeness," W.H. Freeman and Company, 1979. 2
COMBINATORIAL OPTIMIZATION find the best solution out of finitely many possibilities. 3

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Mr. Roboto: Find the best path from A to B avoiding obstacles A B There are infinitely many ways to get from A to B. We can’t try them all. But you only need to try finitely many critical paths to find the best. With brute-force there are exponentially many paths to try. There may be a simple and fast (incremental) greedy strategy. 4
Mr. Roboto: Find the best path from A to B avoiding obstacles The Visibility Graph: 4n + 2 vertices (n = # rectangular obstacles) A B 5

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Combinatorial Optimization Problem (COP) INPUT : Instance I to the COP. Feasible Set: FEAS( Ι29 = τηε σετ οφ αλλ φεασιβλε (ορ ωαλιδ29 σολυτιονσ φορ ινστανχε Ι, υσυαλλψ εξπρεσσεδ βψ α σετ οφ χονστραιντσ. Οβϕεχτιωε Χοστ Φυνχτιον Ινστανχε Ι ινχλυδεσ α δεσχριπτιον οφ τηε οβϕεχτιωε χοστ φυνχτιον, Χοστ[ I] τηατ μαπσ εαχη σολυτιον Σ (φεασιβλε ορ νοτ29 το α ρεαλ νυμβερ ορ ± ∞. Γοαλ Οπτιμιζε (ι.ε., μινιμιζε ορ μαξιμιζε29 τηε οβϕεχτιωε χοστ φυνχτιον. Οπτιμυμ Σετ ΟΠΤ(Ι29 = {Σολ ∈ ΦΕΑΣ(Ι29 | Χοστ[ I] (Σολ29 Χοστ[ I] (Σολ 29, 2200Σολ ∈ΦΕΑΣ(Ι29 } τηε σετ οφ αλλ μινιμυμ χοστ φεασιβλε σολυτιονσ φορ ινστανχε Ι Χομβινατοριαλ Μεανσ τηε προβλεμ στρυχτυρε ιμπλιεσ τηατ ονλψ α φινιτε νυμβερ οφ σολυτιονσ νεεδ το βε εξαμινεδ το φινδ τηε οπτιμυμ. 6
Polynomial vs Exponential time Time complexity Running time n 1 sec. n log n 20 sec. n2 12 days 2n 40 quadrillion (1015) years Assume: Computer speed 106 IPS and input size n = 106 7

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
COP Examples q “Easy” (polynomial-time solvable): Ø Shortest (simple) Path [AAW, Dijkstra, Bellman-Ford, Floyd-Warshall …] Ø Minimum Spanning Tree [AAW, Prim, Kruskal, Cheriton-Tarjan, …] Ø Graph Matching [Jack Edmonds, …] q “NP-Hard” (no known polynomial-time solution): Ø Longest (simple) Path Ø Traveling Salesman Ø Vertex Cover Ø Set Cover Ø K-Cluster Ø 0/1 Knapsack 8
Example: Primality Testing Given integer N  2, is N a prime number?

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 02/13/2012 for the course CSE 4101 taught by Professor Mirzaian during the Winter '12 term at York University.

### Page1 / 94

Approx - CSE 4101/5101 Prof Andy Mirzaian Approximation...

This preview shows document pages 1 - 10. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online