DOE Human Genome primer

DOE Human Genome primer - Genomics and Its Impact on...

Info iconThis preview shows pages 1–8. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Genomics and Its Impact on Science and Society: The Human Genome Project and Beyond U.S. Department of Energy Genome Programs http://doegenomes.org Human Genome Program, U.S. Department of Energy, Genomics and Its Impact on Medicine and Society: A 2001 Primer, 2001 Human Genome Project Human Genome Project Goals: identify all the approximate 30,000 genes in human DNA, determine the sequences of the 3 billion chemical base pairs that make up human DNA, store this information in databases, improve tools for data analysis, transfer related technologies to the private sector, and address the ethical, legal, and social issues (ELSI) that may arise from the project. Milestones: 1990: Project initiated as joint effort of U.S. Department of Energy and the National Institutes of Health June 2000: Completion of a working draft of the entire human genome February 2001: Analyses of the working draft are published April 2003: HGP sequencing is completed and Project is declared finished two years ahead of schedule U.S. Department of Energy Genome Programs, Genomics and Its Impact on Science and Society, 2003 What does the draft human genome sequence tell us? By the Numbers The human genome contains 3 billion chemical nucleotide bases (A, C, T, and G). The average gene consists of 3000 bases, but sizes vary greatly, with the largest known human gene being dystrophin at 2.4 million bases. The total number of genes is estimated at around 30,000--much lower than previous estimates of 80,000 to 140,000. Almost all (99.9%) nucleotide bases are exactly the same in all people. The functions are unknown for over 50% of discovered genes. U.S. Department of Energy Genome Programs, Genomics and Its Impact on Science and Society, 2003 What does the draft human genome sequence tell us? How It's Arranged The human genome's gene-dense "urban centers" are predominantly composed of the DNA building blocks G and C. In contrast, the gene-poor "deserts" are rich in the DNA building blocks A and T. GC- and AT-rich regions usually can be seen through a microscope as light and dark bands on chromosomes. Genes appear to be concentrated in random areas along the genome, with vast expanses of noncoding DNA between. Stretches of up to 30,000 C and G bases repeating over and over often occur adjacent to gene-rich areas, forming a barrier between the genes and the "junk DNA." These CpG islands are believed to help regulate gene activity. Chromosome 1 has the most genes (2968), and the Y chromosome has the fewest (231). U.S. Department of Energy Genome Programs, Genomics and Its Impact on Science and Society, 2003 What does the draft human genome sequence tell us?...
View Full Document

Page1 / 22

DOE Human Genome primer - Genomics and Its Impact on...

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online