h4 - Homework Set 4 for MAS 4105 Due Friday, February 10 1....

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Homework Set 4 for MAS 4105 Due Friday, February 10 1. Define V = {f ∈ P3 (R) : f ′ (−2) = 0}. (a) Compute dim(V ). (b) Find subspaces W1 and W2 of V such that dim(W1 ) = 1 and dim(W2 ) = 2. (Problem 2 on Homework Set 3 may be helpful here.) 2. Let V be a vector space over F . Prove that V is infinite-dimensional if and only if V contains an infinite linearly independent subset. The following problems are strongly recommended, but should not be turned in: 1.6: 1efghjkl 2.1: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16 ...
View Full Document

This document was uploaded on 02/14/2012.

Ask a homework question - tutors are online