{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

MTH 205-Pratice problems and solutions for Test -02-Su-09

MTH 205-Pratice problems and solutions for Test -02-Su-09 -...

Info iconThis preview shows pages 1–8. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 8
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: M'I'HZEIS: Practice Problems Exam 2 i Summero‘j Ql. Find an interval around x = 0 for which the initial value problem (x—I)y"+4_‘x,y'+y=sin(x). y(0)=l. y'(0)=0 has a unique solution. QZ. Consider the differential equation yr! _ 4y = 82: a) Find the general solution y c of the corresponding homogeneous eguation. b) Find a particular solution y p by the method of undetermined coefficients. c) Find the general solution. d) Determine the solution subject to the initial conditions: y(0) = 2. y'IO) =1 I Q3. Solve the same problem in Q3. by the method of variation of parameters. Q4. Find the general solution of .Iczja"'-41I:y'-I-6y=.1cJ QS. Given that y. =e‘ is a solution ofthe d. e (xi-Dy" —(x+ 2)y + y= 0. find the general solution. Q6. Set up the appropriate form of the particular solution yp , but do not determine the values of the coefficients. ym +9y' = (x + l) sin(3x) Q7. Use the method of undetermined coefficients to find the solution of the I. V P. y” + 4y= 25in(2t), y(0)— _ I, y (0): 0 08. Given that { y, =x , 2 — -x lnx} Isa fundamental set of solutions of the corresponding homogeneous equation of the differential equation xy" -'3:I.y +4 y x lnx Use the variational method to find the general solution of the differential equatiOn. Q9. A 16 — pound weight stretches a spring 2 feet. Initially the weightstarts from rest 2 feet below the equilibrium position. Determine the differential equation and the initial conditions of the motion, if the surrounding medium offers aidamping force numerically equal to the instantaneous velocity and the weight is driven by an external force equal to f (r) = S 005(21). 010. Find the transient and steady periodical solution of y” + 2y' + 2y = 20cos(21) . y(0) = y'(0) = 0 % all 7;: 1 “105 -' arc-hit: E1001 0 Isa; VP 4’” a ““1?" 5"" m“ E] sac 5 L3HQ-‘tO‘Wl-p‘o h .. a) my“ :3 a” 4" i: a at K I I J ‘- umHnuu::;:;!(1) WA 06““ M.- wI-Ha fi1{t\:X-L*D b) fitLlaul )“ .1 (15 1414:01ch I 3 0'70 I M& x" =0 er “flint-=24 0. 'NO-h. P 3 .{x)=t‘hafluhs,L 9.1] an...“ :61: “.tx) = _ 3,11) 5m (Ll: Wm) M h a H.- — ) ‘1 q1_°»m1_q =0 ‘5‘“:‘4'3- put. 1:. Fu“&nh+& Ed. gélz’clxi “- W(‘ ,8 )_. -" 1' $6.10 : ¢ at): 3-3; ‘1: 2 I. I 4' c1. 5) 3:9“le 1.1 'u =1+1=H E $ 1 ‘5! ,Ac ‘F‘Kte 1.x 1.x. 3f=zf~€** LKI‘L +HKXC‘I u‘ll\ I II I e . ‘ 1x ‘1}: an“ «r Hkxe“ H ”a 21 3' . J- lax p-H1r=,_ =9 '15:“ +Hhxe.“ '6 —- H but 2“ Wu) -.- /_._..___.---%"M ""‘u 4“ WM»; ) .. I ‘t 1 E” "‘ '1 M: l :- an: mm = ,fiid; =- 3|!- :1. =9 Ag‘IL‘ “I H 1-3:. 1" 9% =4. “ rm" 6‘35 +-‘-><¢ fl) Genw‘ She. ' 5"" H [I -‘|— 1! J- 2.]. $lx‘ I ‘3:ng *x‘t&) ‘3? )' I“ e + H I: fim .-.- c'e'” +mlx+_\q_x¢u c.) 3!!) r u) Hutu) I -3 LI ,d‘u Cent—Lit! 1| _ -33 ‘33.)“; :3) c! *‘C: = :- vtl):.1 ‘6 *ICJI_J_:‘+_L 3(0):! fl -15‘+2c*+1q=| I *1 {Ken I 'I :7 __ _ I, 'ch *73': -'-| ‘8‘“ “41¢” +uaéfifl—z’ I +16; a 1 1-“. 1,; f 6 “Ir-”- '4 ¢°"‘F} d) Mn afigt—Mw‘yt .=1—¢z =7._]_‘L= l3 ‘1“):4 a deg-1c +J_ ‘zm 3-H j ‘ "' =9 Iii-vac 31 ‘ 8: s: e I 3k 1:; ‘- lT: +"¢ +-:-‘-x¢ - +*1¢:—FL ~_—A;‘— c, H: '7 1",- C = -5 33. c -~'_z. =7 3 I “'1"- z): fill):£g 5...: -1. 'x-Lt ‘ H. + q k. e a"! '3 '23 I, 11 u =3, ‘3”): , ¢ 72-: 4-4;“- Q" ”2'3””‘1’13/4- ‘3 =13 5-3): Fill mtg‘ A'h‘ktj “(n-l) —HM+‘ :0 n‘ --M “vim {"zo '0‘ -5m 1-! we F‘M‘. Ln _3)(~-1‘) =0 Q? M = a. u 3 ”.1 “4“.“ wk 3 9 ‘lm -.— t3x‘3c3a ‘ w 1“.) ‘5”) 2:23: Find ‘3’ H313»; fhflh‘Hi-nl“ ”firm -.- mu) 3 m + Mn 3 u) '55“ U):—J_3_____ Wl'jya.) t 1 “(I J“):- \:l :1\;3x:—1-x" —x “I £3) E ”J7—E-____:- J—NJI__IIJI ‘I “I!” c -..'x, “3111) =- ] 3:008:10 ‘1 (and) ugh} _.._. 3313: J: rjilerJ-‘t 2‘! ‘33:“) :-xm‘- .3 @013 ‘39th : I? (-i aria-fla' _’—-B# ‘M- = “X PM”) ‘am- : C3153- Can-.13 + ”(-4 +1.33 ‘3 I!) g‘" *3.) #13:: _-::¢. 69 El (1+l)afl- (2+z)ul+‘a=o "’ unlu- n-t-Wu*& VII. r‘aacln.“ hhkni‘ue ' 3 t ) u 321'L 3." =“ix)y(xJ_-. (x) J u'm = 3 us 31...... We 2 .Hw" "‘9 ‘3‘“): fax-nu? 144:" 1.45:3 “use «SKA-k («flu-m4 be a IX+|‘J(u" 47.9. .3u\¢:;(x+1‘)(u “)3!- ‘H’W' u. 8' fixuflfgxw Qi:u”+1. - ru’fl =;{1+I)u' +xu.’ =0 M w =LL fi(x1—u)%‘i af¢a3= =9 JAM =9 Jmm = E +J¢UJ :0 7+! -fll —-i-:H)Jz +c. -(¥—)n\1+t\\+c 3-2 1.31m Q N = e -Mz+1)e #(x+l)¢hx Nut)?” + 5 -1 ada_ fix." \5 1.15:4): It)? ex %3(23:’("P’q 3n): duh- M316 :3! +C.bL-fl\ "C4441 V 93 "Ha: H; “CH3" fin'fld "r‘me. are “rhea-N13 Hams glut): 3(1) grand: t; I"! +1... Fug-KM 1d ”a 3"“:«13 ‘ ' 17,) M “w w w. mug-.1 a... “had-«4 be: '3"- 1113; J.— “ ‘3?!“ =- (kx’3+8;‘fcx\ 5H5; 7"” 7"” ‘JL 4‘ 1' F2 to my.“ Em: a”; +(9 '1' ) 34:. f x 1+' n ./ "’5'" + {jg-$4; Ofl “a 141% a: 7.51.4104 5.1!?)le C : e Mauro I . . :* C M11"! :0 «a; hrs-1135‘? g1: +L\X'§\\ \hetl): c.£—o‘li£+c;5“"t = E: (11m , I+|>° *?‘*)=I in) :25 g" (“H3 A; b“). «we “nwufl’cun! a” '9' Mm :- Msmlzthfi’cc-EQ ‘5 -3; I ’c ’ A5 ~(2{\+1A£MU£ :: — (7. an) €ch ‘51,“)..- mkwluu'tkmhn \ -HMsumx #18914“ 3:001: -(3'H) —. 1F§Mu3 rl-IBU—flfi5 H .1 pump) _ Lu, 5.42.0 s - I! U ‘M’G ,CIW‘(z\+Ct-”¥3=c| 91+C‘tlfi ‘3'ka —trl M smm‘: _, “gamma (3“ '. ‘3. ‘* flair : (1%+|')s|a(3¥3 a"? + L1“? = z. 5"“l3-E') a 5%“ FI‘GA '1‘”) Mflmhh __ ugslfl(?g),l{0‘sm{fi3 M” -|- Rm‘ =0 415%!st "it“: 4.“ =3 .9 Mama. mxsnm‘s "‘ '3“ +‘1fi4filzu ‘6“ = c. “1.x «3sz +c.,5m3: :-.: msnhh Fméamu-l-«Q Selig-fuzfiozhsmsxg 5..) tum-:19 3 Ago "13 1' 2. =9 6: “LL &‘ "fhfl : (Ala-fi-flx +53%“le I «(99 n F’ am} ' + 1’ ) 391§3:,+_L_1¢w(u\ p, ;} ‘F‘JJ '3 ja‘finik l X {”33} Sam) 3.341!) 7" 3 £931.. a”; 5 .3?) ~3(a) : icon 4.3!“) fitn— ——c 5.72; +c15uak "tea-Au) 3 m: -1c‘smfi-nt‘agzt «JigIzfi -+§-".t-$I'IIIH ‘altnr. can+¥.\.s..u -Lkmfi .\ .. xzfllffi3xfi+q3=txlflx 011! w: 'Eli‘b S=Z§+ _ ‘1 (I) :0 U) tofu-,1!) (I) 7'6) Hr?- “MI-P) 16“)“: (rat) 1-..- ‘A: 51M 1?” x1131“: L; mgr-r +fig" 14;: = f”) XIWlt) “'(XI; 11,10!) : N :- "H” F— Jamrfl; c“ 1'; ‘lx brain-fl. Daflp‘J hen-.- flar- SI:%L*23_1&%3. hi: to: ”15 I‘ll. =J-S'a :13 3‘ 11 Hfsw 3' 3 r9 = 1. “.U) =- '12”)?th M I: _ W I6 lb ‘llblfi Wl‘i‘)fi‘) TI?- - 1-," 1 3‘2 9‘ J- "!- Jr. 2 .— x’flax.£h. 3 ‘1 in} -— +287:- Status) -. z} I. Q 95%: l 2. it +16; -ln-lu .‘i‘ *3." 55» . _ 1C5: 1(0):?” fitmsa _ -[ifirgwb A: I 5 m EEW’] _ ,; )3 3 ‘ _. :w -..... w “=ig-{M )4 . i m‘w+m1-I&=o JAR. "A“. '. _\. J H - .. L :F v‘ L! —6-fi-7._1.:F ‘g. F- " 2. $145»: adiabfinA M =_1;1§?.; = ..H' . ' 1. WWW“) x1“);- €£(ng,f£‘£ +CL9afiH) “I'M: Q r; _. 3” ALL 531‘ 7‘04 fir“) ‘13 “AWN“ I}; L - “I'- ‘0‘Ff‘hfi'k )f-Iottiz- A mflq-Bsmf :Li— (9-2.) ' {zfl£),_z.fis|ut+afi‘ott fiftz): “M‘ Arum}, ', xflm-—L1Ac.,z£—qecm{ ’9 2? +12}+/61P: Ia mtzt) '-'- “-LH'UNXFI +'L“‘t) 1"}:‘1- ”K I»! I3 4: 5 i L13 :-J. _. a, .41 in: -‘L{ 51»? + ""6 UN) 1 +-" -(Lx'ia, a-Llfl-x‘l" +611 9.0.322, _ 6., 6 suz’c -: fa tout.) ' 5"” “UASMfi. la n “fl-{841.92% z loaf-zit) a ‘3 +71‘l-i-J7-‘s‘lacah-k‘) Ma) 6: fi m :0 % (""68A 1‘ ”53‘02": +(-é.98-"Ifi)i 3£K wt (*5 '9 w": +1m+$"'0 gunman a mafia-i <=> —53’A+L{B =|u * h? ":4 thg’lq” ”km-.- a (a “*4?“ Huh) -* L! A —é8$ = a Si fwl ‘6'“): ha wAMHt‘a!‘ a "’6A -t- '3 =ID _ ¢°.&gnuw M-.. A +P£$=O) 1m-._.m[m+mmcm (=7 4‘; +8 :19 #=:.‘ts:_1p.suun¢zl5mht3 1' A +1§6$=0 ‘61:“);‘L‘QAMf‘nyBS'flfiX ‘ , \ 17”, —/a \g 1"? ‘Vh’p +1fi9=1¢6oht5 ‘=? " Ire ’ I '3 3 is}; -qamm‘hHasst A =‘ "“‘3 =42. —H 5mm“: +H6wt‘” .-. 1,1,1? IPkM$1§3 *LByUt‘H' 1 n"*"'§%‘°“*7-Z,,‘m+ ' l “ “PM“ g—lkfiot -" m 5:321 7:3“ =xr1H1Pm + 3 241) 1:59:25 - n- :10 H; tht):e*(e,mr'e 1.:‘5M/7) q MUM J .91 —_I____£o 9,1,4, 5: '9' (-IM-Hsfinkufiw (fills-HA mm 1-5:; 1.103;, “1% ‘Iu", ) ghflulfi in)- _ c-(cmqrfl “5M?” (5:; —2h+H§ l—=‘2"a :EJ‘L- c‘fiswifl-rfigfibi'fit) ff‘lh #15 =ok) +314 a __ <% ——A . =IO +75» 3? + 1"“sz mqlfi ii ‘5 =u .110): 1 =35) fl, llf:1_l2: . 35(0)“! .5) —G|-|‘I%C; +——-'-'0 -' VP! =IU 9A—«L 159' —'1k-16=O In» 3 '16 _ .- 3'5 C Ma 1" 1, .7 ‘3? l = fl 1!? 15’; flag a - W... 1- 6H :. as» “3 as? 159 C1 _ Cf“! R €33 ‘3“) '= 3:06 +‘5'ub ' 1dr): 6‘ (emf 1H3; Wt) +—2 Cat-tn + £1 sub-t) 3;“) : — it (flask +5: Sfi't) +52" -CISM{ +szf‘9t) 3'°)=o é gal-:0 59°1=z ‘J’l0‘1=o «a “01* tin—9 =0 =9—1+c‘+9=° ’5? area-6 W) = 2‘ (2m. -—é m t) -—2 ooh-t) + Am 01% thwSt'hJ: 3A. Ea (not -Ls».t) 5 4": J; Pa’joda'h-o ‘4 .4uiu;qmlfl ...
View Full Document

{[ snackBarMessage ]}