MTH 205-Solutions of Review Problems-Summer 2009 - Copy

MTH 205-Solutions of Review Problems-Summer 2009 - Copy - V...

Info iconThis preview shows pages 1–7. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: V Math 205, Dz'fierential Equations 6) Review Questions for F final Exam 1. (1 points). Use Laplace T ransform to solve the following system of dif- ferential equations (U=Unit step function, 6=Dirac delta function): :L"(t) + y(t) = Ll(t — 2) :U(t) + y’(t) = 6(t — 3) such that ;L‘(O) = O and y(0) = O. .2. (Iffomk) Fwd +l~e We,» (a) ¢ffmd (at) iffitiljm: W) %ii*$‘“us (V) A YewhuAfmrolti " than La’o/‘can WM$§0t'm 3'2 ) osl; (z -’ d If? Vase “Ll/[ace "f 5' } a-‘mz’fip—Wi} (C) Sf— gi/og-rzli {(+57 Ll‘ (20ft);th grove. ’“ne ;O\\DQ‘A<AV in.f{J,Va(uaP./alal6n£- 0L “Vt/+3?) v- 2179-96—1 3(1) =- /20 7, 7, i \o‘ V :33 .-7.:S ) Véfkcfl , 1L \gJM‘ lg n. Bulb/ugh :f’“” ,9 MM, .1 (‘OPa-inliE De, CXMch, U DO “Wk CVA‘M‘LC‘ Method 095 UAAfi‘l‘e‘“M¢A M‘%9S‘°‘M ' Conj‘l'fln‘l’k ’ (2x\ on U :34,sz at} +3} +196 1“ «'3; 5’ “89’3" ’gu/Hz 6. (15 points) Answer only one of the following two application questions. eapot and cools. The temperature tea has a temperature of 191°F. the water is added. A. Boiling water (212°F) is poured into a t of the room is 65oF. After 2 minutes the f the tea be 16 minutes after .. B. A mass weighing 4 lb stretches a spring 2 ft. The mass is attached to a viscous damper with a damping force numerically equals to the instantaneous velocity. If the mass is set'in motion 1 ft above the equilibrium position with a downward velocity of 8 ft. / sec, find (a) Its position :1: at any time t. (b) Determine when the mass first return to its equilibrium position. 7. (’15 flat-rite) Answer True (T) or False (F). a. _.___~____ The first step in solving 3/” + ély’ + y = F(;1:) is to solve y” + 421/ + y = 0- b. ______ The frequency for at” + 4x = 0 is 4. c. _____ All the solutions of the differential equation 3/” + 4y = cos 2:1: can be found by substituting y = A cos 2.1: + Bsin 2:73 into the equation and solving for A and B. d. ________ The steady-state solution for x” + 4x’ + 41: = 8 is a: = 2. e. _.__. The integrating factor for the following differential equation emy’ = y — 1 is 6"”. ' n f. The general solution of the differential equation :rrgy” — 3:7:y’ + 43/ = 0, 93 > O is 1 = Ag:2 + 313 lnm. [I I i. i , 4“ g. _____ The differentfél’equation (5y + 2.7?)y’ = 22/ is ‘eka‘dt’. h. ___ The equation 271/ = yex/y — a: is classified a homogeneous differential equation. i. _..___________ The two functions f1 = a: and f2(:r) 2 lat] are linearly dependent on the interval (—00, 00). j. __ The differential equation xy’ = y(:vy3 — l) is Bernoulli, and can be solved by using the substitution 'u. = y‘2. 8. (10 points) Use the power series method to solve the given differential equation. Determine the recurrence relation and the first seven terms. y” + .L‘y' + 112,1; = 3 + :r, y(0) = 3‘ y’(()) = _5 9. (10 points) Solve the following Initial Value Problem using undetermined coefficients: 1/” — 103/ + 251/ = 50:1: + 685'”, y(0) = I ’(0) — So‘u-HM: 1) er—Qmmw I M -- zes- x +3 :LLHL-t) I 2) ’flfeuasa‘t}: {fast} 1 SHS-Z 1 +3’ : SUN-3)) manager“) 51‘ £ffl+£§u3=ac§wcm§ — f , \ 5X6) Xto ‘5 s +?$ 5H5”. 3‘83 + K‘s) .— S; : 54 $2 chs) +\((s, : e’! (5-3)“...15' 1 - .. ‘ 7. (“3* £53,} = ifSH-vl ") X‘ttsw’c '-'- (“‘3 3}£75’”4 x85 * 5‘“)‘3L‘D :6” = f: (31+I)":3|_‘. 29(5’4—1).1 o 5" 1. => th) +s~<m :c’” ’ = a (2.4% I 2. V .. a; 3" ‘ s X‘s) '+ SKCS) : e s ‘ _ qs ($L+‘)(—IS) _ th) -sxgs) :_e‘3“ = ‘ M.“ (SH-0" (5") X8) - 8—25 _ €55 ' aw“) {sumo—W1 X8) : 8-5 6-35 (s‘fly' (5-!)[S-H) _ 6_‘)(sfi) : —1(s *+ n(.. €s‘_1> >(m- é3[LJ—_;L_\.. 5‘ 9 ‘x I 7' S" :1 $141 L/(3SE+‘)+/)(S;_H)3 ; ‘3L3| "J7, 2%: I. -I A "'5 vs Lm) fa) -.- 2 - unit—25 l “l I’m“: Eri- [w H. -+ t mac—z) ."if’ifiW‘E’t‘ , ‘ f“) =1m+(t-~.)uu-23 m = i[ w um. m = 21m dwwfi ‘ -1 -+- Elfi) O‘HAU = "E— 'f c 3:?“ I \ = 3" + L 4&4 e \JWD 9 s?- 4 I 4‘37»! Haj (w) {ii at 5M1 : £511 {ism} .. a» ’ 1 Wva SM #WQ " . 5 “ b) %fl$~f‘<‘§><($x . y " m :1 (V) jokefih—t) 5qu J1] * ;-r) )1? , QZI(£"C) SIn‘ZAZ} i J, WNW}! ‘ t .é : - (—00” (9“) “#5-; '= lfsmz .41 +3;5‘nz (£—1)J £ _ _‘,_—o 0 £ 0 .. " (5-131- (S—)"\ =—2‘w_z +3£SE$mtAC 'L a a — —- «-—-—+""—3 s (virus-9H] _3 row” h I" 3/ o t 2 u) i 52 My?” --'L(&w’c A) ‘3’“ MT \0 " 9—} ‘ e : i {Cs-9)“? _3 (Slat—{561) ‘0 _ j-) 2 =_g hot...“ -3t(g+. — 0 - (Lewd d a dimtdm) ' (5'5) 1’“ 3' _3£;»4: +3450“ 5) 3' = 5‘0 —z\ jjzda =j‘3~l>c’z +C T3,, .— 55°F Tl?) r “tlaf' - :- 3): -.L2"+C. F”; I‘TlUé) %. 5)a “9+ S‘A"+Ié~6 so my '1’ 3m: +I6 =0 ( 1 1:: =__ ‘(Ee dd "" I F A mi: 0 => M +15.) % ’7“): 6’ 'r A6 Mn Gun-On =?%i" K “Na, XSML,‘ J WWW"! W1 :{gmm A; m; K 13"”3 H10“ : 6; + M? fi‘ 2; fijf=A+gxzpzx+Cx¥nw T(;>:lq| =b‘q|=6;+lq;c V a f ' "4? emu}. 13;? W6 H-L ‘7 1‘ = J; “(1,7) g k :-b. 1. \ -6 O (“'1)CM‘+m-6) =0 (M’z)(m+3>(m -7— )30 M = '2: ( WW), m = -3 7.)!- -3; " a. has”: flw=§e§nj e F ' 71¢ - a I - u: u "la'ie/X¢;Z‘¢/ (a) mx”+x’(t)+km; =0 M04; . . . S‘cé “Nth =§xlgj 2e“; ’96:: 4x .1. II / -0 (1).. 121 3 1: } 3x+x+zz, \jr " Ax e ‘HEX €2z+C 1761* 1'11 82’+ILx—=0 +915”- x m *3" H; go %N-:—H(¥ufi‘ E 7cm :1? = c’ 6“ *Qte’V’c a 'i =c| _;1t 91‘. 1. =? 7cm =—;,e +‘ztc' (b) Fina 1; vow. 1%) =0 __ Z: __ :25 a 2 i 0 -j ‘Lo. 3C4 I , VI ' - ex" ‘l=—:_3_.—,__9-_.-_L-g 8 %Lx\=nZ=OCnl)‘j(/l)-gifl J k 3 , _ q I; I] .0 _ —E——-‘ ‘6(x)~;;=:;Ifl(w-\\Cm9‘K (C5- -:—~§3,c} ) *C\ L 20 w'ua’w‘tfl” - 3‘ ' 'J- A m --__(,- c .. w 10 3 I. ‘34: “_‘ "MIN 1 ; Z n(V\-\\Cn1 ‘\' - c’_ 1L 7%‘ Z n: a Kin-'1 W > - - W X + Z¢n1w+z -_-,'S+x k=H h: 0 C -_ ch it? k.="+7’ ‘- 90 k on 30 2 (k+2>(L+\\ckfz-rf“czl“ z—lc -J"Cz =0 66 K=n 30" 3° C K 3 2: k—zx : 3 x _-" -L-Ez)—-‘—'-— +t=2 1— "ikqn’ J01 3cz+€c37c +C.r = _L_ _+ Co I M 30 3'; v To— “ Z n 2. (<4 A C “\‘ +>£ *1) 'V'W?‘ ,, Cb ="-fi‘«+f.9. k=z V I, 1 3° q° ‘ 3 + m + cm 1%“ m: . K- x l 1 . '\ ‘6? = M +13 -+ 62“?“ I - 3r : A + “1 engulf” _ 5x ' 2C: + 7430: esfizsCx‘c; ‘3 (2.) a 8:35.. 9 - 2x+5§+323eu ‘6ka a” +513“ 5'): 3(x)=-qe +6; - +s'd,xc>"‘+2 1-6)”); +'yzle5’l Yum z)l*“f“c . 2.4:? =9 Cat”; - 9°" 5"“ “300.4%: +513 v ...
View Full Document

Page1 / 7

MTH 205-Solutions of Review Problems-Summer 2009 - Copy - V...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online