# HW 1 - ASE 362K Assignment No 1 Thursday January 17‘“...

This preview shows pages 1–16. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ASE 362K, Assignment No 1 Thursday, January 17‘“, 2008 1) Reading Anderson, Chapter 1, sections 1.1 through 1.3. If your thermodynamics could stand a brush-up, read section 1.4 also. 2) In class today we basically “wrote down” the mass conservation, momentum and energy equations, and discussed the physical meaning of each of the terms. I am making the assumption that you have seen (and used) these equations in the past and that I am simply doing an “action replay” to jog your memories back into gear. Now let’s test that assumption. First, draw a suitable control volume, look at What goes in and out of the control volume, What happens inside the control volume and on its surfaces, and derive the three conServation equations in integral form for a 3-D, unsteady, inviscid ﬂow. In other words, derive the equations given on slide 31 (mass conservation), slide 36 (momentum equation) and slide 42 (energy equation) of my Powerpoint introduction which is now posted on Blackboard. Second, starting with the equations you have just derived, obtain algebraic equations for steady, adiabatic l-D and quasi l-D ﬂow. Finally, obtain the differential forms of the mass conservation, momentum and energy equations, namely d(pu) = 0, dP = -pudu and db = udu. 3) The problems below require use of one or more of the conservation equations. Your job is to decide which is/are needed for a given problem, and then solve it. (i) A pressure vessel 1m3 in volume contains air at an initial pressure of 6 atmospheres (6.07 x 105 Nm'z) and at an initial temperature of 298K. Air is discharged isothermally from the tank at the rate of 0.1m3/s. Assuming that the discharged air has the same density as that of the air in the tank, ﬁnd an expression for the time rate of change of density of the air in the tank. After 5 seconds, what is the rate of pressure decrease in the tank? Assume a perfect gas. (ii) Water ﬂows steadily past a porous ﬂat plate (below). Constant suction is applied along the porous section. The velocity proﬁle at cd is given by Calculate the mass ﬂow across section be. n 0 ,€_L5£_?°,l C%,L?Q[ 0915.0! ,a.___.n9l:-,,,,V a 5gb; 7:8, a.— ...n ,erhﬂehtapsunjéuzwqreo» ."a , .-_ Lil-L‘lii. .n.w Mat , E e._ -'—- L. .. .J _ . _ , . . . __ _. ' 7_____...,_0|1a‘laL£i__Erim-J:9.31:97 37-5,;D. 3....__SE0..{\$7 ,, , BMLQA‘gw/mguiJiﬂsdw :ﬁﬂ-Aﬁ,,,. . .._ 7 . ,, ._._..,r,r WAPI’LQJ}.-. ,K , . ,7,,,,,....__..._..____.FL3‘5j "buggy—mﬁm‘gsme ‘ A Wm,” __ . 1:51;; ﬁg,” e ___. iv _______V, t?____ __ _,_, WWiW,_c=5alét;9mé_¢_m1m:ﬁs;ug .._f>__v_n.'..1_c.gu.L> ,- w ,.._..___._____mrqlg_g_go.z:. watsgmymdemx, “Arafagigilénu__, ,‘Lsdha _ ._ - A...._..n.. ._-, 7,, _ __f,€>n0vm;c5 7 ,v.i.s_.§£4L.-.J {as/c2.) , Wﬁdam.‘cal erlemgtaL. 91\$ , 1:! b G) Ed n . rFffééwe -aCI-L w;de buoffaslbér Oub‘wwd @eckm-l. \5 ___gz_.§> " g _ ,,.§,-____mag:._k&;,m ,ﬁ "Wham 51%;.(9..m£w.,;'4c,cc.4.s,,, ,th N ,, __ 777 __ CLAW . 54...; 75" " “9,,ﬁa; ,, 4 7, ,, .Egm‘ol..w;¢4 , .__,,, __C&e4.1fd!-£m- imqasm.€)—m , "#n________r,,‘__._‘,,,l1q..g_.. .,,,,,,C._U—....— r. ‘ .. . ‘riiﬁw, 7,, ,, ,, .UA . ,A, V _. _____. ___________ __,_ ., ._.__‘, w“. . .. V __ ..‘_—\e='._.-!._l_9_fl_&_.__..... _. .___....‘ ww— ‘ _________ .. t _ _ C‘V ,‘ €111; Cohsiav‘ 0L ,C_U, _ raEﬂnakquuc/Luhedn .3 _ ._ mpg .._di_d,ed.._.§ , t up}. . W msgth 91g; ___'Ed§_s_\lm _. N . r, . 7, 7 . A ' ,, I __ ., L5) - , ,, across... ,, N __ COLLLIEJ . . __ , ____________ ._ g“ ____ f 7 _ — i @164” ‘ﬁ W1d\$+g€~v)dv (a, deal g aw __ ,, . .7L£;_M,[email protected]__a tjﬁg‘ug’; . . 9,7444 , __ Z _ in” ,,.,,',,t _._ 1.1. u , r, 'f' _ Liz Adz _ 7 7 , ME;_,+,,A(zm3.3 _ VVEQ%,E¢L LILLQFHM _ __._"__:_.u____:_ , ,,‘.‘.___.__.)>_[72>,t,,£ , _ __ _ , _ i , ____Vf__w,_.w __ .. ‘_.-~....- [email protected]_-..!:9W m ,,, ,, _ _ _. ____ 7 -- ﬁ~~~—-—-~ w 7:, Mam-A4 771' t }__(_e_{ VJ; _ __ ._ __ﬂ mm 777W 757 r 7,E4i3',,,ﬁﬁ,4_.__j.P_2._Mi_. ,E:tc2iE_ ___. "Ea"im;g:._ﬂ§f§;:d_ﬁ:-"ZEQQLAMQtCQtaaGQLYGQ}; Au _. ,y _, . ,27614,AWQL9L, L430! dCQuA>= O 0" 4' A =- Cwﬁgwk 0‘ T. 0 30033 901)" kt‘VWE : L‘LJf “L2 .— in 1‘12 5" (0»)? 3 a 0x (hi-UL: = d (“Mg 0*“ ‘\‘ .. O or -.; —ut0’{ug 2. W o Ecovwﬁ (oxalruAuU-ZS COLL. nel- mass) How “Are C-v ‘Jii - - - " hue ma“; rah Q mortar-r. o‘f' mop.) um CV o Mk? Fr» w; ea]; :1. '5 H’W‘ ra/{I \$ mass.) :44 We Cv ChoE Harsh “as t3 {vital and IS 4 M3). "IV-m; ‘11: w; .3 {4.9 at}- am 31M va'se u' e “V . fol: CH- u-Luﬂ- 9 Mom: Chat/v. :5) Suit»; 'Ba/ :TiH-u- Reg-i-(lekb 5"“ .) f" a EHer vo'wwf 1:" l-OEE: +0.1 6: w- =_ —O"I€ bf be ’ UWs‘aLJc ﬁbna‘ IMFanl-MK \V‘ P = “0‘16 .1- CknaR—n-t- (3m; Hue.»- air (7:0 3 @- 671 whore 4 re)”. FE _cwd.‘p—|°V;_, we raw- o'alﬁl... Hm: cwok‘ZaL) _o.v‘e UP; 63:94.6 = (—0.4) C6-o'9~2< no“): ’6»ch -.-— -—o-’37-2< Jog-N/W.‘ {5 . G) COHD‘U‘QGLT—Ovr Mn); eel/L. E l-‘L-ﬂ- (Wwol Uclvlmf S‘NWM lot-Ion.» . 9 311111113 1:1. ‘ . I Lam 1.3 A —.——4 "a: "0‘1; Mmle I We need SMC' Q):WFLTWSV °~ 5'? 3 C 3 2° 0 Mb HM “5 ® lh'CMPNJb\.Lk c, P=CM5RF — -- _'VO 3 C SPCC;L:OO"> In an. HOY'K-Q We hiafd- F o CS + +5 ‘15 Col up. In. 0 (97-9131— (Mr- N. J M «Wm Wm M m ww- Ea! * Yewrwxzmj‘lw‘5 * W“ HE EH C u louH-vnb mbc a... L—H4& - ems Wm{3(99-109'1d0é _ O "' ()vomL @ -.: (Jun [11:08 - 07:03:38 “‘Vo L] (3w [03213.8 — Vat—J l, P -_-. 0PM Inc/n} 00 :— l-j‘m 7);: -_ 3m}; g -=. I'S-XIO‘TSM Vo 2- c>-:?..n'm"3 m]; L. = 1% c —_ @ﬁox)(:-5>[(o-s)(3)(I-\$mo'9 "' (O '7. x 10.1)(1>J lH-‘i'?-\$Ll-1€-0"+ 3'04 H3}; .. l-H-z. bra/s ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 16

HW 1 - ASE 362K Assignment No 1 Thursday January 17‘“...

This preview shows document pages 1 - 16. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online