2.2 Matrix

# 2.2 Matrix - 2.2 2.2 The matrix representation of a linear...

This preview shows pages 1–4. Sign up to view the full content.

2.2. 2.2. The matrix representation of a linear transformation 1. β = { v 1 ,v 2 , ··· ,v n } , γ = { w 1 ,w 2 , ··· ,w m } bases for V and W, respectively (a) T (p.82 Theorem 2.7(a)) (b) T (p.73 The corollary to Theorem 2.6 and p.80) (p.80) Let T:V W is linear. Then for each j , 1 j n , there exist unique scalars a ij ,b ij F, 1 i m s.t T( v j ) = m i =1 a ij w i , U( v j ) = m i =1 b ij w i for 1 j n Suppose [ T ] γ β = ( a ij ) m × n ,[ U ] γ β = ( b ij ) m × n If [ T ] γ β = [ U ] γ β , then T( v j ) = m i =1 a ij w i = m i =1 b ij w i =U( v j ) for all a ij ,b ij F, v j β . Hence T=U (c) F ([ T ] γ β is an n × m matrix ) (d) T (p.83 Theorem 2.8 (a)) (e) T (0 ∈ L ( V,W )) and Theorem 2.7 (a)) (f) F (p.104 L ( V,W ) = M m × n ( F ), L ( W,V ) = M n × m ( F )) ( cf ) ( L ( V,W ) = L ( W,V )) but ( L ( V,W ) 6 = L ( W,V )) 2. Compute [ T ] γ β (a) T(1,0)=(2,3,1)=2 w 1 + 3 w 2 + 1 w 3 , T(0,1)=( - 1 , 4 , 0) = - 1 w 1 + 4 w 2 + 0 w 3 [ T ] γ β = 2 - 1 3 4 1 0 77 PNU-MATH

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2.2. (b) T(1,0,0)=(2,1), T(0,1,0)=(3,0), T(0 , 0 , 1) = ( - 1 , 1) [ T ] γ β = ± 2 3 - 1 1 0 1 (c) [ T ] γ β = (1 , 0 , - 3) (d) [ T ] γ β = 0 2 1 - 1 4 5 1 0 1 (e) [ T ] γ β = 1 0 ··· 0 1 0 ··· 0 . . . . . . ··· . . . 1 0 ··· 0 (f) [ T ] γ β = 0 0 ··· 0 1 0 0 ··· 1 0 . . . . . . ··· . . . 0 1 ··· 0 0 1 0 ··· 0 0 (g) [ T ] γ β = (1 , 0 , ··· , 0 , 1) 3. (a) T(1,0)=(1,1,2)= - 1 3 (1 , 1 , 0) + 0(0 , 1 , 1) + 2 3 (2 , 2 , 3) T(0,1)=( - 1 , 0 , 1)= - 1(1 , 1 , 0) + 1(0 , 1 , 1) + 0(2 , 2 , 3) [ T ] γ β = - 1 3 - 1 0 1 2 3 0 (b) T(1,2)=( - 1 , 1 , 4)= - 7 3 (1 , 1 , 0) + 2(0 , 1 , 1) + 2 3 (2 , 2 , 3) T(2,3)=( - 1 , 2 , 7)= - 11 3 (1 , 1 , 0) + 3(0 , 1 , 1) + 4 3 (2 , 2 , 3) 78 PNU-MATH
2.2. [ T

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 10

2.2 Matrix - 2.2 2.2 The matrix representation of a linear...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online