4.3 Properties of Determinants 2

# 4.3 Properties of Determinants 2 - 4.3 C n × c C n 1 ⇒ C...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 4.3. . . .- C n × c + C n +1 ⇒ C n +1 then we have fl fl fl fl fl fl fl fl fl fl fl 1 ··· 1 ( c 1- c ) c 1 ( c 1- c ) ··· c n- 1 1 ( c 1- c ) 1 ( c 2- c ) c 2 ( c 2- c ) ··· c n- 1 2 ( c 2- c ) . . . . . . . . . . . . 1 ( c n- c ) c n ( c n- c ) ··· c n- 1 n ( c n- c ) fl fl fl fl fl fl fl fl fl fl fl = ( c 1- c )( c 2- c ) ··· ( c n- c ) fl fl fl fl fl fl fl fl fl 1 c 1 c 2 1 ··· c n- 1 1 1 c 2 c 2 2 ··· c n- 1 2 . . . . . . . . . . . . 1 c n c 2 n ··· c n- 1 n fl fl fl fl fl fl fl fl fl = ( c 1- c )( c 2- c ) ··· ( c n- c ) fl fl fl fl fl fl fl fl fl 1 ··· 1 ( c 2- c 1 ) c 2 ( c 2- c 1 ) ··· c n- 2 2 ( c 2- c 1 ) . . . . . . . . . . . . 1 ( c n- c 1 ) c n ( c n- c 1 ) ··· c n- 2 n ( c n- c 1 ) fl fl fl fl fl fl fl fl fl = ( c 1- c ) ··· ( c n- c )( c 2- c 1 ) ··· ( c n- c 1 ) fl fl fl fl fl fl fl 1 c 2 c 2 2 ··· c n- 2 2 . . . . . . . . . . . . 1 c n c 2 n ··· c n- 2 n fl fl fl fl fl fl fl = ··· = Q ≤ i<j ≤ n ( c j- c i ) 23. a) So k is the largest number of linearly independent columns of A thus rankA ( A ) = k (b) 205 PNU-MATH 4.3. Since rank ( A ) = k , there exists { a 1 ,a 2 , ··· ,a k } a linearly independent set of columns of A So A can be written as a 11 ··· a 1 k ··· . . . . . . . . . . . . a n 1 ··· a nk ··· Since dim (row space A ) = dim (column space of A ) Therefore A = a 11 ··· a 1 k ....
View Full Document

## This note was uploaded on 02/14/2012 for the course MAS 4105 taught by Professor Rudyak during the Spring '09 term at University of Florida.

### Page1 / 8

4.3 Properties of Determinants 2 - 4.3 C n × c C n 1 ⇒ C...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online