CWR4202_Lecture_Packet_02_master

CWR4202_Lecture_Packet_02_master - CWR 4202 Lecture 2...

Info icon This preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: CWR 4202 Lecture 2 Visualizing Flow The fundamental method of visualizing a flow pattern is by means of 'streamlines'. A streamline is constructed by drawing a line which is tangential to the velocity vectors of a connected series of fluid particles (Fig. 1 (a)). The streamline is thus a line representing the direction of flow of the series of particles at a given instant. Because the streamline is always tangential to the flow, it follows that there is no flow across a streamline. A set of streamlines may be arranged to form an imaginary pipe or tube. This is known as a 'streamtube' (Fig. 1(b)). Under certain specific circumstances, streamtubes can actually be identified. For example, the internal surface of a pipeline must also be a streamtube, since the vectors representing the flow adjacent to the surface must be parallel to that surface. The surface is therefore 'covered' with streamlines. Fig. 1 Definition of a streamline and streamtube. (Adapted from Andrew Chadwick, John Morfett and Martin Borthwick. Hydraulics in Civil and Environmental Engineering, Fourth Edition. 2004. Spon Press. NY, NY.) Fundamental Physical Principals of Hydraulics 1. Conservation of Mass (Continuity) 2. Conservation of Energy 3. Conservation of Momentum (Newtons 2nd Law) 1 scalar equation 1 scalar equation 1 vector equation or(3 scalar equations) Note: For most real world applications we want to reduce problems to scalar equations (more readily applied). Conservation of Mass (Continuity) Energy and Momentum Coefficients In deriving the momentum equation, it was stressed that it could only be applied directly to a large region if the velocity ( ) was constant across the region (set equal to V). The energy equation was stated to apply to a streamline with velocity . In many real fluid flow problems, V varies across a section. The velocity distribution across a section is not always known, and the mean velocity (defined as ) must be used instead of V. However, both the energy and momentum equations may still be used by introducing the energy and momentum coefficients, and, ' respectively. Portions of this material were adapted from: Andrew Chadwick, John Morfett and Martin Borthwick. Hydraulics in Civil and Environmental Engineering, Fourth Edition. 2004. Spon Press. NY, NY. ...
View Full Document

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern