S5_Unit_1_Outcome_2 - Higher Higher Unit 1 Outcome 2...

Info iconThis preview shows pages 1–8. Sign up to view the full content.

View Full Document Right Arrow Icon
Outcome 2 www.mathsrevision.com Higher Outcome 2 Higher Unit 1 Higher Unit 1 www.mathsrevision.com www.mathsrevision.com What is a set Recognising a Function in various formats Composite Functions Exponential and  Log Graphs Connection between Radians and degrees & Exact values Solving Trig Equations Basic Trig Identities Graph Transformations Trig Graphs
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Outcome 2 www.mathsrevision.com Higher Outcome 2 Sets & Functions Sets & Functions Notation & Terminology SETS :  A set is a collection of items which have     some  common property. These items are called the members  or elements  of the  set. Sets can be described  or listed  using “curly bracket”  notation.
Background image of page 2
Outcome 2 www.mathsrevision.com Higher Outcome 2    eg {colours in traffic lights}    eg   {square nos. less than 30} DESCRIPTION LIST NB: Each of the above sets is finite  because we can list every member =  {red, amber, green} = { 0, 1, 4, 9, 16, 25} Sets & Functions Sets & Functions
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Outcome 2 www.mathsrevision.com Higher Outcome 2 Sets & Functions Sets & Functions N = {natural numbers} = {1, 2, 3, 4, ……….} W = {whole numbers}  = {0, 1, 2, 3, ………. .} Z = {integers}  = {….-2, -1, 0, 1, 2, …. .} Q = {rational numbers} This is the set of all numbers which can be written as fractions  or ratios . eg    5 =  5 / 1      -7 =  -7 / 1      0.6 =  6 / 10  =  3 / 5                             55% =  55 / 100  =  11 / 20    etc We can describe numbers by the following sets:
Background image of page 4
Outcome 2 www.mathsrevision.com Higher Outcome 2 R = {real numbers} This is all   possible numbers.  If  we  plotted values on a number line then  each of the previous sets would leave gaps but the set of real numbers  would give us a solid line. We should also note that N   “fits inside”   W   W  “fits inside”    Z     Z   “fits inside”    Q    Q   “fits inside”    R Sets & Functions Sets & Functions
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Outcome 2 www.mathsrevision.com Higher Outcome 2 Sets & Functions Sets & Functions Q Z W N When one set can fit inside another we say  that it is a subset  of the other. The members of R which are not inside Q are called irrational   numbers.   These cannot be expressed as fractions and include   π   ,   2,    3 5   etc R
Background image of page 6
Outcome 2 www.mathsrevision.com Higher Outcome 2 To show that a particular element/number belongs to a particular set  we use the symbol  .    eg    3   W   but     0.9   Z  Examples { x   W: x < 5 } =   { 0, 1, 2, 3, 4 } { x   Z: x   -6 } =   { -6, -5, -4, -3, -2, ……. . } { x   R: x 2  = -4 } =    { }  or   Φ This set has no elements and is called the empty set .
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 8
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 95

S5_Unit_1_Outcome_2 - Higher Higher Unit 1 Outcome 2...

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online