S5_Unit_2_Outcome_3

# S5_Unit_2_Outcome_3 - Higher Unit 2 Higher Outcome 3...

This preview shows pages 1–9. Sign up to view the full content.

www.mathsrevision.com Higher Outcome 3 Higher Unit 2 Higher Unit 2 www.mathsrevision.com www.mathsrevision.com Trigonometry identities of the form sin(A+B) Double Angle formulae Trigonometric Equations Exam Type Questions More Trigonometric Equations

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
www.mathsrevision.com Higher Outcome 3 Trig Identities The following relationships are always true for two angles  A  and B. 1a. sin(A + B) = sinAcosB + cosAsinB 1b. sin(A - B)  = sinAcosB -  cosAsinB 2a. cos(A + B) = cosAcosB – sinAsinB 2b. cos(A - B) = cosAcosB + sinAsinB Quite tricky to prove but some of following examples should show  that they do work!! Supplied on a  formula sheet !!
www.mathsrevision.com Higher Outcome 3 Examples 1 (1) Expand  cos(U – V). (use formula 2b ) cos(U – V) =  cosUcosV + sinUsinV (2)  Simplify    sinf°cosg° - cosf°sing° (use formula 1b ) sinf°cosg° - cosf°sing°  =   sin(f – g)° (3)  Simplify   cos8    θ sin θ  + sin8    θ cos  θ (use formula 1a ) cos8    θ sin  θ  + sin8    θ cos  θ   =  sin(8  θ  +  θ ) =  sin9  θ Trig Identities

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
www.mathsrevision.com Higher Outcome 3 =  cos30° Example 2 By taking A = 60°  and B = 30°,   prove the identity for  cos(A – B). NB: cos(A – B)  =  cosAcosB  +  sinAsinB LHS = cos(60 – 30 )° =   3 / 2 RHS = cos60°cos30° +  sin60°sin30° = ( ½   X   3 / 2  ) + ( 3 / 2   X  ½) =   3 /  +   3 / 4 =   3 / 2 Hence  LHS  =  RHS !! Trig Identities
www.mathsrevision.com Higher Outcome 3 Example 3 Prove that  sin15°  =  ¼( 6 -  2) sin15° = sin(45 – 30)° =   ( 1 / 2    X    3 / 2  ) - ( 1 / 2   X  ½) =    ( 3 / 2   -    1 / 2 2 )   =  sin45°cos30°  - cos45°sin30° =     ( 3  -  1)   2 2       X      2               2 =     ( 6  -  2)     4 =  ¼( 6 -  2) Trig Identities

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
www.mathsrevision.com Higher Outcome 3 Example 4 α β 41 40 4 3 Show that    cos( α  -  β )  =   187 / 205 Triangle1 If missing side = x x Then   x 2  = 41 2  – 40 2  = 81 So  x = 9 sin α  =  9 / 41    and   cos α  =  40 / 41 Triangle2 If missing side = y y Then   y 2  = 4 2  + 3 2  = 25 So  y = 5 sin  β  =  3 / 5    and   cos β  =  4 / 5 Trig Identities NAB type  Question
www.mathsrevision.com Higher Outcome 3 Trig Identities cos( α  -  β )  = cos α cos β   + sin α sin β   =   ( 40 / 41   X   4 / 5 )  +  ( 9 / 41   X    3 / 5  )  =     160 / 205   +   27 / 205 =     187 / 205 Remember this is a NAB type Question sin α  =  9 / 41    and   cos α  =  40 / 41 sin  β  =  3 / 5    and   cos β  =  4 / 5

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
www.mathsrevision.com
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 02/13/2012 for the course MAT 205 math 205 taught by Professor Google during the Spring '10 term at University of Phoenix.

### Page1 / 82

S5_Unit_2_Outcome_3 - Higher Unit 2 Higher Outcome 3...

This preview shows document pages 1 - 9. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online