S5_Unit_3_Outcome_3

# S5_Unit_3_Outcome_3 - Higher Unit 3 Higher Outcome 3...

This preview shows pages 1–8. Sign up to view the full content.

www.mathsrevision.com Higher Outcome 3 Higher Unit 3 Higher Unit 3 www.mathsrevision.com www.mathsrevision.com Special “e” and Links between Log and Exp Rules for Logs Exam Type Questions Solving Exponential Equations Harder Exponential & Log Graphs

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
www.mathsrevision.com Higher Outcome 3 Functions Exponential Graph Logarithmic Graph y x y x (0,1) (1,0)
www.mathsrevision.com Higher Outcome 3 The letter  e  represents the value  2.718…. .                 (a never  ending decimal).                                                     This  number occurs often in nature f(x) = 2.718. . x  = e x                                                           is called  the exponential function to the base  e . A Special Exponential Function – the  “Number”  e

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
www.mathsrevision.com Higher Outcome 3 y x ( ) 2 x f x = 1 ( ) f x - = (0,1) (1,0) In  Unit 1   we found that  the exponential function  has an inverse function,  called the logarithmic  function. log 1 0 log 1 log a a x a a y a x y = = = = 2 log x The log function is the inverse of the exponential function, so it  undoes ’ the exponential function: Linking the Exponential          and the  Logarithmic Function
www.mathsrevision.com Higher Outcome 3 f (x )  = 2 x             as k your s e lf :  2   2 1  = 2   s o   lo g 2 2  = 1  “2  t o  wh at  po we r  g ive s  2 ? ”  2   4   2 2  = 4   s o   lo g 2 4  =   “2  t o  wh at  po we r  g ive s  4 ? ”  3   8   2 3  = 8   s o   lo g 2 8  =   “2  t o  wh at  po we r  g ive s  8 ? ”  4   16   2 4  = 16   s o   lo g 2 16  =   “2  t o  wh at  po we r  g ive s  16 ?”  f (x )  = log 2 x   2 3 4 Linking the Exponential          and the  Logarithmic Function

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
www.mathsrevision.com Higher Outcome 3 f (x )  = 2 x             as k your s e lf :  2   2 1  = 2   s o   log 2 2  = 1  “2  t o  what  powe r  give s  2 ? ”  2   4   2 2  = 4   s o   log 2 4  =   “2  t o  what  powe r  give s  4 ? ”  3   8   2 3  = 8   s o   log 2 8  =   “2  t o  what  powe r  give s  8 ? ”  4   16   2 4  = 16   s o   log 2 16  =   “2  t o  what  powe r  give s  16 ? ”  f (x )  = log 2 x   2 3 4 Examples (a) log 3 81 =  “    to what power gives       ?” (b) log 4 2 =  “    to what power gives       ?” 1 27 (c) log 3                = “    to what power gives        ?” 4 3 81 4 2 -3 3 Linking the Exponential          and the  Logarithmic Function 1 2 1 27
www.mathsrevision.com Higher Outcome 3 log log

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 02/13/2012 for the course MAT 205 math 205 taught by Professor Google during the Spring '10 term at University of Phoenix.

### Page1 / 67

S5_Unit_3_Outcome_3 - Higher Unit 3 Higher Outcome 3...

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online