{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Lecture14 - Engineering Analysis ENG 3420 Fall 2009 Dan C...

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
Engineering Analysis ENG 3420 Fall 2009 Dan C. Marinescu Office: HEC 439 B Office hours: Tu-Th 11:00-12:00
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
2 Lecture 14 Lecture 14 Last time: Solving systems of linear equations (Chapter 9) Graphical methods Cramer’s rule Gauss elimination Today: Discussion of pivoting Tri-diagonal system solver Examples Next Time LU Factorization (Chapter 10)
Background image of page 2
function x=GaussNaive(A,b) ExA=[A b]; [m,n]=size(A); q=size(b); if (m~=n) fprintf ('Error: input matrix is not square; n = %3.0f, m=%3.0f \n', n,m); End if (n~=q) fprintf ('Error: vector b has a different dimension than n; q = %2.0f \n', q); end n1=n+1; for k=1:n-1 for i=k+1:n factor=ExA(i,k)/ExA(k,k); ExA(i,k:n1)= ExA(i,k:n1)-factor*ExA(k,k:n1); End End x=zeros(n,1); x(n)=ExA(n,n1)/ExA(n,n); for i=n-1:-1:1 x(i) = (ExA(i,n1)-ExA(i,i+1:n)*x(i+1:n))/ExA(i,i); end
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon