This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: Math 17C
Kouba
Worksheet 2 1.) Let R be the region bounded by the graphs of y : x3. and y = 4:10 (in the ﬁrst quadrant). Describe R using vertical cross—sections.
b.) Describe R using horizontal cross—sections. 2.) Let R be the region inside the circle of radius 2 centered at (0,0) and above the yaxis.
a.) Describe R using vertical crosssections.
b.) Describe R using horizontal crosssections. 3.) Let R be the triangular region with vertices (0,0), (—2, 3), and (2, 3).
a.) Describe R using vertical crosssections.
b.) Describe R using horizontal crosssections. 4.) Let R be the region bounded by the graphs of x = y2 and :1: = 2 — y2 .
a.) Describe R using vertical crosssections.
b.) Describe R using horizontal crosssections. 5.) Sketch each of the following regions described in two—dimensional space.
a.)0§$§1,3xSyS$+~2 b.)0$xgln4,emgyg4
C~)1SyS4,—\/§SxS\/17 d~)1Sysln5,1nySmSey 6.) Evaluate the following double integrals.
3 1 1 2 $69;
a.) / / (1 +4xy)drcdy b.) / / —dyd:r
1 0 0 1 y
2 1 8 1 1 my
c.) / / 2m+y) dxdy d.) / / ————————dydx
0 0 ( 0 0 «3:2 + y2 + 1
1 m2 1 6"
e.) / / (a: + 2y) dy dz f.) / / Vida: dy
0 0 0 y 7r/2 cos y . 1r/4 7r/6
g.) / / 65‘“ 3’ dz): dy h.) / / cos 3m sin 2y dy dm
0 0 0 0 (Beware of the next two.) 1 3 1 1
i.) / / e$2 day dy j.) / / V 2:3 +1drcdy
0 3y 0 ﬂ 1 7.) Find the area of the region
a.) in problem 1. b.) in problem 4. 8.) Consider a mountain range above the grid 0 S x S 5, 0 S y S 8, where distance
is measured in miles. Elevation (miles) above sea level at the point (13,34) is given by H(a:, y) = (1/40)(10 — m2 + yz). a.) Find the elevation at the points (0,0), (4, 2), and (0,8).
b.) Compute the average elevation of this mountain range. 9.) A ﬂat plate lies in region R bounded by the graphs of y = ﬂ and y = (1/2):c.
Temperature at point (x, y) is given by T(m, y) = 50 + 2x + y (0F). a.) Find the area of the plate. b.) Find the average width of the plate.
c.) Find the average height of the plate.
d.) Find the temperature at the points (0,0), (2, 1.1), and (4, 2).
e.) Find the average temperature of the plate. 10.) Sketch the solid in 3DSpace whose volume is given by the following double integral. 1 yl/S
/ / (4—:c2—y2)d:rdy
0 0 11.) A ﬂat plate lies in region R bounded by the graphs of :1: 2: 0, y = $3, and y = 1'2 + 4.
Density at point (x, y) is given by 6(1), y) = 1 + .7: + 2y grams per square centimeter. a.) Find the area of the plate. b.) Find the average width of the plate. c.) Find the average height of the plate. d.) Find the density at the points (0,0), (1,3), and (2,8). e.) Find the average density of the plate. f.) Find the total mass of the plate. 12.) Compute the volume of the solid lying above the region bounded by the graphs of
y = 2:5, y = 2, and :1: = O and below the paraboloid z = .132 + y2. 13.) Compute the volume of the solid which is above the region bounded by the graphs of
y=cr2, y=0, andzr:2 and between the planeS$+y+z=6and$—y+z= 12. ...
View
Full Document
 Summer '09
 Lewis
 plate, vertical crosssections, horizontal crosssections

Click to edit the document details