LectureNotes33

LectureNotes33 - r—“E'EL—# ifl‘flb Name Formula...

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: r—“E'EL—# ifl‘flb Name Formula Name Formula Aqua H20 Fluoro F? Ammine NH3 Chloro C1“ Carbonyl CO Bromo Br— Nitrosyl N O lodo I— Hydroxo 0H7 Cyano CN' Comm 1 W M94 (193/3 r—ox [600Wij jCoflfofl \ [coma] 3 £29». [:0ch FM 7 EM «' ' Mme“ swégco . f) [coamozxwa ]* C0 (la/9,2 +( )+( )1: 00 0W2 '5 C] . m. g’w‘fl’a Mahmud. M axz'dd‘fmq W of NA” 1’4 [MK )I] NMLW—F ll wrzkflvvmflwff xrm mafia bow/Kmmf'é, Max/6mm MSLA Mfr/{afith #60 +3, a I,» + J7 W’Q‘W—Mwfiflwmflmr (Q3 dfivW {HMfiW—m Ighle 23.1 Sb'rfié Cofnmon Ligands in Chordination Compounds Ligand Type Examples Monoclentate H26: water if? [luoride ion I:CEN:] cyanide ion hydroxide ion ZNHS ammonia :CJ'IL? ch'loride ion [=§:C=N:]_ thiocyanale ion [@—[\k=5:]' nitrite ion orHJ LDrJ Bidcmate ,O" "O. 2— n \\ // . HZCJCHQ c—c / \ .. / \ .. H2N NHZ eihylenediamine (en) oxalate ion :0: :0: 4- .. H H .. :Q—C—CH2 CH2!C—Qi O .O. O 57 \ / u ' H‘ H )NruCHerH2f N: Polydemate H20 _CH2 CH2; CH‘2 P—Q!P_r Q: z§_C__CH2 CH2_Ct§: / \ / \ | i 1 u u HEN NH NH2 0 O 1H1 :0: :0: diethylenetriamine lriphosphale ion elhylenediaminetetraacetate ion (EDTA4') [ A km;- W H2 H2 3 H CfN-r—E‘ iN C? \Ptz+// \CH 2 m/ an) "‘2‘ / 2 Z I_ \IINrf—CHE _/ H2 H; “m rfvua’we 03‘ a, WW [4) (6) W 0mm!- no. (5) the rc‘flb’u’ufioa/ WWW IVst " 2.’ 4 r __— —_—o (MW: of 33m; [- W ,ff-uy 456Nan Avficw W. No “I W W <z+/ . z'Ptx « W No =5 W W NH$ Hag-:13 NH; W0 3* Hz?” ' F If: /£\P// flar' Slag/mag [049%, kW T 85033 W M W agar/14m my? WW g :5 ‘4' xkg?’ y as}: _ 53 i _‘ ' *‘nlv‘ll’; K“ ‘7‘. L’ - 7‘} ill K9“ X '1 k“ 'd l {‘51 l A B d 2 LL} - a f P; it'f ' . i i a”, l a“; R“ "4.13 D dxy dxz Splitting of d—orbital energies by an octahedral field of ligands. Electrons in the d orbitals of the free metal ion experience an average net re— pulsion in the negative ligand field that increases all d—orbital energies. Electrons in the dxy, dyz, and d”z orbitals, which form the tzg set, are repelled less than those in the (321,2 and dzz orbitals, which form the eg set. The energy difference be- tween these tWO sets is the crystal field splitting energy. A. @’?% I if" . "_' 7 ' ! a lThe five of orbitals in an X“: _ l 3 o tahedral field of ligands. The direction of ligand approach influences the strength of repulsions of electrons in the rd, i U live metal d orbitals. A, We assume that r ligands approach a metal ion along the K R} a three linear axes in an octahedral orienta- ! H X K“ ii tion. B and C, Lobes oi the 032.); and of : orbitals lie directly in line with the ap— i“ I} _ v: preaching ligands, so repulsions are ‘5 C dzz w stronger. D to F, Lobes of the dxy, o‘xz, and o'yz orbitals lie between the approaching . Rf ligands, so repulsions are weaker. A..-- ' "3 l _ me i Li in“; K... a)" f . tw- .. it) F dyz 5'9 ,Dflm I dzE dxz—y2 >. [I m I a l C l A a) I E ,DDDDEL‘ E l’ \\ I2g a / *Dmmu / dxy dyz dxz Average potential energy of adorbitals raised in octahedral ligand field DEDDD/ 3d orbitals in free ion 30‘ orbital splitting in octahedral ligand field ...
View Full Document

Page1 / 6

LectureNotes33 - r—“E'EL—# ifl‘flb Name Formula...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online