{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

quiz11

# quiz11 - 0.0019-1.9 0.0287-0.9 0.1841 0.1 0.5398 1.1...

This preview shows page 1. Sign up to view the full content.

Name: Quiz 11 16 November 2005 Write the best answer to each question in the box provided. Show your work. 1. Find a value of k that will make f ( x ) = ke - 2 x a probability density function on the interval [0 , ) k = 2. Find the expected value, variance, and standard deviation of the probability density function f ( x ) = x 3 + 1 2 over the interval [ - 1 , 1]. μ = Var( x ) = σ = 3. A normal distribution describing the results of a test has a mean μ = 80 and a standard deviation of σ = 10. The table shows the area under the standard normal curve to the left of the given z -score. Calculate the probability that a randomly selected student will have a score between 60 and 90. P (60 x 90) = z .00 z .00 z .00 z .00 z .00 -2.9
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 0.0019-1.9 0.0287-0.9 0.1841 0.1 0.5398 1.1 0.8643-2.8 0.0026-1.8 0.0359-0.8 0.2119 0.2 0.5793 1.2 0.8849-2.7 0.0035-1.7 0.0446-0.7 0.2420 0.3 0.6179 1.3 0.9032-2.6 0.0047-1.6 0.0548-0.6 0.2743 0.4 0.6554 1.4 0.9192-2.5 0.0062-1.5 0.0668-0.5 0.3085 0.5 0.6915 1.5 0.9332-2.4 0.0082-1.4 0.0808-0.4 0.3446 0.6 0.7257 1.6 0.9452-2.3 0.0107-1.3 0.0968-0.3 0.3821 0.7 0.7580 1.7 0.9554-2.2 0.0139-1.2 0.1151-0.2 0.4207 0.8 0.7881 1.8 0.9641-2.1 0.0179-1.1 0.1357-0.1 0.4602 0.9 0.8159 1.9 0.9713-2.0 0.0228-1.0 0.1587 0.0 0.5000 1.0 0.8413 2.0 0.9772 Table 1: Area under the standard normal curve to the left of z...
View Full Document

{[ snackBarMessage ]}