{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

spring2007

# spring2007 - MATH 1241 FINAL EXAM SPRING 2007 PART...

This preview shows pages 1–6. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MATH 1241 FINAL EXAM SPRING 2007 PART I (Calculators Not Allowed) 1. If f ( x ) = (2 x 3 + 5) 7 , then f ′ ( x ) = (a) (6 x 2 ) 7 (b) 7 (6 x 2 ) 6 (c) 7 (2 x 3 + 5) 6 (d) 42 x 2 (2 x 3 + 5) 6 (e) 14 x 3 (2 x 3 + 5) 6 2. If f ( t ) = sin ( t 3 ), then f ′ ( t ) = (a) cos ( t 3 ) (b)- 3 t 2 cos ( t 3 ) (c) cos (3 t 2 ) (d)- cos (3 t 2 ) (e) 3 t 2 cos ( t 3 ) 3. If f ( x ) = 8 x 1 + x 2 , then f ′ ( x ) = (a) 8- 8 x 2 (1 + x 2 ) 2 (b) 8 (1 + 2 x ) 2 (c) 8 x 2- 8 (1 + x 2 ) 2 (d) 8 2 x (e) 8 + 24 x 2 (1 + x 2 ) 2 1 4. If f ( t ) = cos t- 3 e 2 , then f ′ ( t ) = (a)- sin t- 6 e (b) sin t- 6 e (c)- sin t (d) sin t (e)- sin t- 3 e 2 5. If f ( x ) = 6 √ x + 2 x , then f ′ ( x ) = (a) 6 √ x + 2 (b) 3 √ x- 2 x 2 (c) 6 √ x- 2 x 2 (d) 6 x + 2 (e) 3 √ x + 2 x 2 6. If f ( x ) = 2 x ( x 2- 4 √ x ), then f ′ ( x ) = (a) 6 x 2- 12 √ x (b) 2 parenleftbigg 2 x- 2 √ x parenrightbigg (c) 2 (2 x- 2 √ x ) (d) 6 x 2- 24 √ x (e) 6 x 2- 12 √ x 2 7. If f ( x ) = e x x 2 + 3 , then f ′ ( x ) = (a) e x 2 x (b) e x (2 x + 3) 2 (c) e x ( x 2- 2 x + 3) ( x 2 + 3) 2 (d) e x- 2 x ( x 2 + 3) 2 (e) e x ( x 2 + 2 x + 3) ( x 2 + 3) 2 8. If f ( x ) = 3 x 2 ln x , then f ′ ( x ) = (a) 6 x · 1 x (b) 6 x ln x + 3 x (c) 6 x ln x · 3 x (d) 6 x ln x (e) 3 x 9. If f ( x ) = 2 e 3 − x 2 , then f ′ ( x ) = (a) 2 e x (- 2 x ) (b) 2 e − 2 x (c) 2 e 3 − x 2- 2 x (d) 2 e x (3- x 2 ) (e) 2 e 3 − x 2 (- 2 x ) 10. lim x → 2 x 2 + x- 6 x- 2 = (a) ∞ (b) 5 (c) 2 (d) 0 (e) Does not exist . 3 11. lim x →∞ 3 x 2- 9 x- 5 x 2 = (a) 3 (b) ∞ (c)- 3 5 (d) 9 5 (e) 9 12. lim x → e 3 x- 1 x 3 = (a)- 1 3 (b) 0 (c) 3 2 (d) 9 2 (e) ∞ . 13. If f ( x ) = 2 x 3- 3 x 2 + 1, then the x-coordinate of the inflection point is: (a) x =- 2 (b) x = 2 (c) x =- 1 2 (d) x = 1 2 (e) x = 1 14. If f ( x ) = x 3- 3 x 2 + 6, then f ( x ) is decreasing on the interval(s): (a) (-∞ , 2) (b) (1 , ∞ ) (c) (0 , 1) (d) (0 , 2) (e) (-∞ , 0) ∪ (2 , ∞ ) 4 15. Let15....
View Full Document

{[ snackBarMessage ]}

### Page1 / 15

spring2007 - MATH 1241 FINAL EXAM SPRING 2007 PART...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online