{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Summary of Series Tests 2

# Summary of Series Tests 2 - Summary of Convergence Tests...

This preview shows page 1. Sign up to view the full content.

Summary of Convergence Tests for Infinite Series Test Series Converges if Diverges if Comment Divergence X n =1 a n lim n →∞ a n 6 = 0 cannot be used to show convergence Geometric Series X n =0 ar n | r | < 1 | r | ≥ 1 Sum: S = a 1 - r p -Series X n =1 1 n p p > 1 p 1 Integral X n =1 a n Z 1 f ( x ) dx Z 1 f ( x ) dx f is continuous, positive, a n = f ( n ) 0 converges diverges and decreasing 0 a n b n 0 b n a n Comparison X n =1 a n and X n =1 b n and X n =1 b n a n , b n positive converges diverges a n , b n positive lim n →∞ a n b n > 0 lim n →∞ a n b n > 0 Test fails if Limit Comparison X n =1 a n and and lim n →∞ a n b n = 0 X n =1 b n converges X n =1 b n diverges or lim n →∞ a n b n = Alternating Series X n =1 ( - 1) n - 1 b n b n +1 b n lim n →∞ b n 6 = 0 b n positive lim n →∞ b n = 0 Absolute Convergence X n =1 a n X n =1 | a n | cannot be used to show divergence converges Ratio X n =1 a n lim n →∞ a n +1 a n < 1 lim n →∞ a n +1 a n > 1 Test fails if lim
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}