浙江大学2008-2009å­&brvbar

浙江大学2008-2009学

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
浙江大学 2008–2009 学年秋、冬学期 《数学分析》课程期末考试试卷 开课学院: 理学院 ,考试形式:闭 考试时间:_____年____月____日,所需时间: 120 分钟 考生姓名: _____ 学号: 专业: ________ 题序 总 分 得分 评卷人 . 1 )请用ε -N 语言写出“函数列 { } n f ”在数集 D 上不一致收 敛于 f 的定义 . 2 )判断下列函数列的一致收敛性 . 1 2 2 1 x n x + ( , ) D Î -¥ +¥ 2 2 2 1 nx n x + ( 1,1) D Î - . 证明:若幂级数 0 n n n a x ¥ = å 的收敛半径为 R ,证明幂级数 1 0 n n nax ¥ - = å x R > 时发散 . . 构造幂级数求 ( ) 1 1 (2 1) n n n n ¥ = - - å
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
. 证明函数 2 2 2 2 2 2 2 2 1 ( )sin , 0 ( , ) 0, 0 x y x y x y f x y x y ì
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 02/18/2012 for the course SCIENCE 1221 taught by Professor Lee during the Spring '10 term at Renmin University of China.

Page1 / 2

浙江大学2008-2009学

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online