This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: Math 4377, Linear Algebra, Mock and Review for First Exam. Summer 2011, Dr. Min Ru, University of Houston Rwview all homework problems . You need to know the type of the problem (i.e. what is the purpose of the problem). Here are some selected hws: Problem 2 and 3 in HW1 (the definition of a field, how to determine whether S is field). Section 1.2: #13 , 18 (the definition of vector space , and how to de termine a given V is a vector space (proof and counterexample). Section 1.3: #8 (the definition of subspace , and how to determine a given W V (assume we know that V is a vector space) is a subspace (proof and counterexample). Section 1.4: #5 (the meaning of Span S , how to determine whether a given vector is in Span S ), #6 (the meaning S generates the vector space V ), Section 1.5: #2 , 3 (the meaning of linearly dependent and inde pendent , how to verify), Section 1.6: #2 ,.. (the meaning of a basis , how to prove a given set is a basis, dimension, ...), #9 (how to express a given vector in terms of the linear combination of the vectors in the basis).the linear combination of the vectors in the basis)....
View
Full
Document
This note was uploaded on 02/21/2012 for the course MATH 4377 taught by Professor Staff during the Summer '08 term at University of Houston.
 Summer '08
 Staff
 Linear Algebra, Algebra

Click to edit the document details