f3 - Estimate Alpha Lower Upper litter 0.04738 0.05...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Example F3 SAS Program data hogs; input litter gain; datalines ; 1 1.18 1 1.11 2 1.36 2 1.65 3 1.37 3 1.40 4 1.07 4 0.90 ; run ; proc mixed data =hogs noclprint noinfo method =type3 asycov cl ; class litter ; model gain = ; random litter/ solution ; title 'Average Daily Gain in Swine' ; run ;
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Average Daily Gain in Swine 1 The Mixed Procedure Type 3 Analysis of Variance Sum of Source DF Squares Mean Square Expected Mean Square litter 3 0.328800 0.109600 Var(Residual) + 2 Var(litter) Residual 4 0.059400 0.014850 Var(Residual) Type 3 Analysis of Variance Error Source Error Term DF F Value Pr > F litter MS(Residual) 4 7.38 0.0416 Residual . . . . Covariance Parameter Estimates Cov Parm
Background image of page 2
Background image of page 3
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Estimate Alpha Lower Upper litter 0.04738 0.05 -0.04092 0.1357 Residual 0.01485 0.05 0.005331 0.1226 Asymptotic Covariance Matrix of Estimates Row Cov Parm CovP1 CovP2 1 litter 0.002030 -0.00006 2 Residual -0.00006 0.000110 Fit Statistics -2 Res Log Likelihood -1.5 AIC (smaller is better) 2.5 AICC (smaller is better) 5.5 BIC (smaller is better) 1.2 Average Daily Gain in Swine 2 The Mixed Procedure Solution for Random Effects Std Err Effect litter Estimate Pred DF t Value Pr > |t| litter 1 -0.09510 0.1291 4 -0.74 0.5021 litter 2 0.2161 0.1291 4 1.67 0.1693 litter 3 0.1124 0.1291 4 0.87 0.4330 litter 4 -0.2334 0.1291 4 -1.81 0.1448...
View Full Document

Page1 / 3

f3 - Estimate Alpha Lower Upper litter 0.04738 0.05...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online