02 - Physics 6210/Spring 2007/Lecture 2 Lecture 2 Relevant...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Physics 6210/Spring 2007/Lecture 2 Lecture 2 Relevant sections in text: 1.2 Quantum theory of spin 1/2 We now try to give a quantum mechanical description of electron spin which matches the experimental facts described previously. Let us begin by stating very briefly the rules of quantum mechanics. We shall show what they mean as we go along. But it is best to know the big picture at the outset. Rule 1 Observables are represented by self-adjoint operators on a (complex) Hilbert space H . Rule 2 States are represented by unit vectors in H . The expectation value h A i of the observable A in the state | i is given by the diagonal matrix element h A i = h | A | i . Rule 3 Time evolution is a continuous unitary transformation on H . We will now use Rules 1-2 to create a model of a spin 1/2 particle. We will not need Rule 3 for a while (until Chapter 2). We suppose that a spin 1/2 system is completely described by its spin observable S , which defines a vector in 3-d Euclidean space. As such, S is really a collection of 3 observables, which we label as usual by S x , S y , S z , each of which is to be a (self-adjoint) linear operator on a (Hilbert) vector space. We have seen that the possible outcomes of a measurement of any component of S is h/ 2. As we will see, because the set of possible outcomes of a measurement of one these observables has two values, we should build our Hilbert space of state vectors to be two-dimensional. A two dimensional Hilbert space* is a complex vector space with a Hermitian scalar product. Let us explain what all this means....
View Full Document

This note was uploaded on 02/18/2012 for the course PHYSICS 6210 taught by Professor M during the Spring '07 term at AIU Online.

Page1 / 4

02 - Physics 6210/Spring 2007/Lecture 2 Lecture 2 Relevant...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online