3GPP_Spec

3GPP_Spec - ETSI TS 136 211 V10.0.0 (2011-01) Technical...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ETSI TS 136 211 V10.0.0 (2011-01) Technical Specification LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (3GPP TS 36.211 version 10.0.0 Release 10) 3GPP TS 36.211 version 10.0.0 Release 10 1 ETSI TS 136 211 V10.0.0 (2011-01) Reference RTS/TSGR-0136211va00 Keywords LTE ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. © European Telecommunications Standards Institute 2011. All rights reserved. TM TM TM TM DECT , PLUGTESTS , UMTS , TIPHON , the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members. TM 3GPP is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. LTE™ is a Trade Mark of ETSI currently being registered for the benefit of its Members and of the 3GPP Organizational Partners. GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association. ETSI 3GPP TS 36.211 version 10.0.0 Release 10 2 ETSI TS 136 211 V10.0.0 (2011-01) Intellectual Property Rights IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp). Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document. Foreword This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP). The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables. The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp. ETSI 3GPP TS 36.211 version 10.0.0 Release 10 3 ETSI TS 136 211 V10.0.0 (2011-01) Contents Intellectual Property Rights ................................................................................................................................2 Foreword.............................................................................................................................................................2 Foreword.............................................................................................................................................................6 1 Scope ........................................................................................................................................................7 2 References ................................................................................................................................................7 3 Definitions, symbols and abbreviations ...................................................................................................7 3.1 3.2 4 Symbols .............................................................................................................................................................. 7 Abbreviations ..................................................................................................................................................... 9 Frame structure .........................................................................................................................................9 4.1 4.2 5 Frame structure type 1 ...................................................................................................................................... 10 Frame structure type 2 ...................................................................................................................................... 10 Uplink .....................................................................................................................................................11 5.1 5.1.1 5.1.2 5.2 5.2.1 5.2.2 5.2.3 5.3 5.3.1 5.3.2 5.3.2A 5.3.2A.1 5.3.2A.2 5.3.3 5.3.3A 5.3.3A.1 5.3.3A.2 5.3.4 5.4 5.4.1 5.4.2 5.4.2A 5.4.3 5.5 5.5.1 5.5.1.1 Overview .......................................................................................................................................................... 11 Physical channels ........................................................................................................................................ 12 Physical signals ........................................................................................................................................... 12 Slot structure and physical resources................................................................................................................ 12 Resource grid .............................................................................................................................................. 12 Resource elements ...................................................................................................................................... 14 Resource blocks .......................................................................................................................................... 14 Physical uplink shared channel ........................................................................................................................ 14 Scrambling .................................................................................................................................................. 15 Modulation.................................................................................................................................................. 15 Layer mapping ............................................................................................................................................ 16 Layer mapping for transmission on a single antenna port ..................................................................... 16 Layer mapping for spatial multiplexing ................................................................................................ 16 Transform precoding................................................................................................................................... 16 Precoding .................................................................................................................................................... 17 Precoding for transmission on a single antenna port ............................................................................. 17 Precoding for spatial multiplexing ........................................................................................................ 17 Mapping to physical resources.................................................................................................................... 20 Physical uplink control channel........................................................................................................................ 21 PUCCH formats 1, 1a and 1b ..................................................................................................................... 22 PUCCH formats 2, 2a and 2b ..................................................................................................................... 24 PUCCH format 3 ........................................................................................................................................ 25 Mapping to physical resources.................................................................................................................... 26 Reference signals .............................................................................................................................................. 27 Generation of the reference signal sequence ............................................................................................... 27 R Base sequences of length 3N scB or larger ............................................................................................ 28 5.5.1.2 5.5.1.3 5.5.1.4 5.5.2 5.5.2.1 5.5.2.1.1 5.5.2.1.2 5.5.2.2 5.5.2.2.1 5.5.2.2.2 5.5.3 5.5.3.1 5.5.3.2 5.5.3.3 R Base sequences of length less than 3N scB ............................................................................................ 28 Group hopping ...................................................................................................................................... 30 Sequence hopping ................................................................................................................................. 31 Demodulation reference signal ................................................................................................................... 31 Demodulation reference signal for PUSCH .......................................................................................... 31 Reference signal sequence ............................................................................................................... 31 Mapping to physical resources ........................................................................................................ 33 Demodulation reference signal for PUCCH .......................................................................................... 33 Reference signal sequence ............................................................................................................... 33 Mapping to physical resources ........................................................................................................ 34 Sounding reference signal ........................................................................................................................... 35 Sequence generation.............................................................................................................................. 35 Mapping to physical resources .............................................................................................................. 35 Sounding reference signal subframe configuration ............................................................................... 38 ETSI 3GPP TS 36.211 version 10.0.0 Release 10 5.6 5.7 5.7.1 5.7.2 5.7.3 5.8 6 4 ETSI TS 136 211 V10.0.0 (2011-01) SC-FDMA baseband signal generation ............................................................................................................ 39 Physical random access channel ....................................................................................................................... 39 Time and frequency structure ..................................................................................................................... 39 Preamble sequence generation .................................................................................................................... 46 Baseband signal generation......................................................................................................................... 49 Modulation and upconversion .......................................................................................................................... 49 Downlink ................................................................................................................................................50 6.1 6.1.1 6.1.2 6.2 6.2.1 6.2.2 6.2.3 6.2.3.1 6.2.3.2 6.2.4 6.2.5 6.2.6 6.3 6.3.1 6.3.2 6.3.3 6.3.3.1 6.3.3.2 6.3.3.3 6.3.4 6.3.4.1 6.3.4.2 6.3.4.2.1 6.3.4.2.2 6.3.4.2.3 6.3.4.3 6.3.4.4 6.3.5 6.4 6.5 6.6 6.6.1 6.6.2 6.6.3 6.6.4 6.7 6.7.1 6.7.2 6.7.3 6.7.4 6.8 6.8.1 6.8.2 6.8.3 6.8.4 6.8.5 6.9 6.9.1 6.9.2 6.9.3 6.10 6.10.1 6.10.1.1 6.10.1.2 Overview .......................................................................................................................................................... 50 Physical channels ........................................................................................................................................ 50 Physical signals ........................................................................................................................................... 50 Slot structure and physical resource elements .................................................................................................. 51 Resource grid .............................................................................................................................................. 51 Resource elements ...................................................................................................................................... 51 Resource blocks .......................................................................................................................................... 52 Virtual resource blocks of localized type .............................................................................................. 53 Virtual resource blocks of distributed type ........................................................................................... 53 Resource-element groups ............................................................................................................................ 54 Guard period for half-duplex FDD operation ............................................................................................. 55 Guard Period for TDD Operation ............................................................................................................... 55 General structure for downlink physical channels............................................................................................ 55 Scrambling .................................................................................................................................................. 56 Modulation.................................................................................................................................................. 56 Layer mapping ............................................................................................................................................ 56 Layer mapping for transmission on a single antenna port ..................................................................... 56 Layer mapping for spatial multiplexing ................................................................................................ 57 Layer mapping for transmit diversity .................................................................................................... 58 Precoding .................................................................................................................................................... 59 Precoding for transmission on a single antenna port ............................................................................. 59 Precoding for spatial multiplexing using antenna ports with cell-specific reference signals ................ 59 Precoding without CDD .................................................................................................................. 59 Precoding for large delay CDD ....................................................................................................... 60 Codebook for precoding .................................................................................................................. 60 Precoding for transmit diversity ............................................................................................................ 64 Precoding for spatial multiplexing using antenna ports with UE-specific reference signals................. 64 Mapping to resource elements .................................................................................................................... 65 Physical downlink shared channel .................................................................................................................... 65 Physical multicast channel ............................................................................................................................... 65 Physical broadcast channel ............................................................................................................................... 66 Scrambling .................................................................................................................................................. 66 Modulation.................................................................................................................................................. 66 Layer mapping and precoding .................................................................................................................... 66 Mapping to resource elements .................................................................................................................... 66 Physical control format indicator channel ........................................................................................................ 67 Scrambling .................................................................................................................................................. 67 Modulation.................................................................................................................................................. 67 Layer mapping and precoding .................................................................................................................... 67 Mapping to resource elements .................................................................................................................... 68 Physical downlink control channel ................................................................................................................... 68 PDCCH formats .......................................................................................................................................... 68 PDCCH multiplexing and scrambling ........................................................................................................ 68 Modulation.................................................................................................................................................. 69 Layer mapping and precoding .................................................................................................................... 69 Mapping to resource elements .................................................................................................................... 69 Physical hybrid ARQ indicator channel ........................................................................................................... 70 Modulation.................................................................................................................................................. 71 Resource group alignment, layer mapping and precoding .......................................................................... 71 Mapping to resource elements .................................................................................................................... 73 Reference signals.............................................................................................................................................. 75 Cell-specific reference signals .................................................................................................................... 75 Sequence generation.............................................................................................................................. 75 Mapping to resource elements............................................................................................................... 75 ETSI 3GPP TS 36.211 version 10.0.0 Release 10 5 ETSI TS 136 211 V10.0.0 (2011-01) 6.10.2 MBSFN reference signals ........................................................................................................................... 78 6.10.2.1 Sequence generation.............................................................................................................................. 78 6.10.2.2 Mapping to resource elements............................................................................................................... 78 6.10.3 UE-specific reference signals ..................................................................................................................... 80 6.10.3.1 Sequence generation.............................................................................................................................. 80 6.10.3.2 Mapping to resource elements............................................................................................................... 81 6.10.4 Positioning reference signals ...................................................................................................................... 86 6.10.4.1 Sequence generation.............................................................................................................................. 86 6.10.4.2 Mapping to resource elements............................................................................................................... 86 6.10.4.3 Positioning reference signal subframe configuration ............................................................................ 87 6.10.5 CSI reference signals .................................................................................................................................. 88 6.10.5.1 Sequence generation.............................................................................................................................. 88 6.10.5.2 Mapping to resource elements............................................................................................................... 88 6.10.5.3 CSI reference signal subframe configuration ........................................................................................ 91 6.11 Synchronization signals .................................................................................................................................... 92 6.11.1 Primary synchronization signal................................................................................................................... 92 6.11.1.1 Sequence generation.............................................................................................................................. 92 6.11.1.2 Mapping to resource elements............................................................................................................... 92 6.11.2 Secondary synchronization signal............................................................................................................... 93 6.11.2.1 Sequence generation.............................................................................................................................. 93 6.11.2.2 Mapping to resource elements............................................................................................................... 95 6.12 OFDM baseband signal generation .................................................................................................................. 96 6.13 Modulation and upconversion .......................................................................................................................... 96 7 7.1 7.1.1 7.1.2 7.1.3 7.1.4 7.2 8 8.1 Generic functions ...................................................................................................................................97 Modulation mapper .......................................................................................................................................... 97 BPSK ................................................................................................................................................................ 97 QPSK................................................................................................................................................................ 97 16QAM ............................................................................................................................................................ 98 64QAM ............................................................................................................................................................ 98 Pseudo-random sequence generation................................................................................................................ 99 Timing ..................................................................................................................................................100 Uplink-downlink frame timing ....................................................................................................................... 100 Annex A (informative): Change history .............................................................................................101 History ............................................................................................................................................................104 ETSI 3GPP TS 36.211 version 10.0.0 Release 10 6 ETSI TS 136 211 V10.0.0 (2011-01) Foreword This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP). The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows: Version x.y.z where: x the first digit: 1 presented to TSG for information; 2 presented to TSG for approval; 3 or greater indicates TSG approved document under change control. y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc. z the third digit is incremented when editorial only changes have been incorporated in the document. ETSI 3GPP TS 36.211 version 10.0.0 Release 10 1 7 ETSI TS 136 211 V10.0.0 (2011-01) Scope The present document describes the physical channels for evolved UTRA. 2 References The following documents contain provisions which, through reference in this text, constitute provisions of the present document. • References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific. • For a specific reference, subsequent revisions do not apply. • For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document. [1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications". [2] 3GPP TS 36.201: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Layer – General Description". [3] 3GPP TS 36.212: "Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding". [4] 3GPP TS 36.213: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures". [5] 3GPP TS 36.214: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer – Measurements". [6] 3GPP TS 36.104: 'Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception'. [7] 3GPP TS 36.101: 'Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception'. [8] 3GPP TS36.321, 'Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification' 3 Definitions, symbols and abbreviations 3.1 Symbols For the purposes of the present document, the following symbols apply: (k , l ) Resource element with frequency-domain index k and time-domain index l ( a k ,pl ) Value of resource element (k , l ) [for antenna port p ] D DRA f0 Matrix for supporting cyclic delay diversity Density of random access opportunities per radio frame Carrier frequency ETSI 3GPP TS 36.211 version 10.0.0 Release 10 8 ETSI TS 136 211 V10.0.0 (2011-01) f RA PRACH resource frequency index within the considered time-domain location P M scUSCH PUSCH M RB (q) M bit (q) M symb Scheduled bandwidth for uplink transmission, expressed as a number of subcarriers Scheduled bandwidth for uplink transmission, expressed as a number of resource blocks Number of coded bits to transmit on a physical channel [for codeword q ] Number of modulation symbols to transmit on a physical channel [for codeword q ] layer M symb Number of modulation symbols to transmit per layer for a physical channel ap M symb Number of modulation symbols to transmit per antenna port for a physical channel N N CP ,l A constant equal to 2048 for Δf = 15 kHz and 4096 for Δf = 7.5 kHz N CS Cyclic shift value used for random access preamble generation (1) N cs Number of cyclic shifts used for PUCCH formats 1/1a/1b in a resource block with a mix of formats 1/1a/1b and 2/2a/2b R Bandwidth available for use by PUCCH formats 2/2a/2b, expressed in multiples of N scB (2) N RB HO N RB Downlink cyclic prefix length for OFDM symbol l in a slot cell N ID The offset used for PUSCH frequency hopping, expressed in number of resource blocks (set by higher layers) Physical layer cell identity M N IDBSFN MBSFN area identity DL N RB R Downlink bandwidth configuration, expressed in multiples of N scB min, N RB DL R Smallest downlink bandwidth configuration, expressed in multiples of N scB max, N RB DL R Largest downlink bandwidth configuration, expressed in multiples of N scB UL N RB R Uplink bandwidth configuration, expressed in multiples of N scB min, N RB UL R Smallest uplink bandwidth configuration, expressed in multiples of N scB max, N RB UL R Largest uplink bandwidth configuration, expressed in multiples of N scB DL N symb Number of OFDM symbols in a downlink slot UL N symb Number of SC-FDMA symbols in an uplink slot R N scB Resource block size in the frequency domain, expressed as a number of subcarriers N sb Number of sub-bands for PUSCH frequency-hopping with predefined hopping pattern sb N RB Size of each sub-band for PUSCH frequency-hopping with predefined hopping pattern, expressed as a number of resource blocks Number of downlink to uplink switch points within the radio frame N SP PUCCH N RS Number of reference symbols per slot for PUCCH N TA Timing offset between uplink and downlink radio frames at the UE, expressed in units of Ts N TA offset Fixed timing advance offset, expressed in units of Ts (1, ~ ) p nPUCCH ( 2, ~ ) p nPUCCH ~) (3, p nPUCCH Resource index for PUCCH formats 1/1a/1b Resource index for PUCCH formats 2/2a/2b Resource index for PUCCH formats 3 nPDCCH Number of PDCCHs present in a subframe nPRB Physical resource block number RA nPRB RA nPRB offset First physical resource block occupied by PRACH resource considered First physical resource block available for PRACH nVRB Virtual resource block number nRNTI Radio network temporary identifier nf System frame number ETSI 3GPP TS 36.211 version 10.0.0 Release 10 9 ETSI TS 136 211 V10.0.0 (2011-01) ns P p q Slot number within a radio frame Number of antenna ports used for transmission of a channel Antenna port number Codeword number rRA Qm sl( p ) (t ) Index for PRACH versions with same preamble format and PRACH density Modulation order: 2 for QPSK, 4 for 16QAM and 6 for 64QAM transmissions Time-continuous baseband signal for antenna port p and OFDM symbol l in a slot ( 0) t RA Radio frame indicator index of PRACH opportunity (1) t RA ( 2) t RA Half frame index of PRACH opportunity within the radio frame Tf Radio frame duration Ts Basic time unit Tslot W Slot duration Precoding matrix for downlink spatial multiplexing Amplitude scaling for PRACH β PRACH β PUCCH β PUSCH β SRS Uplink subframe number for start of PRACH opportunity within the half frame Amplitude scaling for PUCCH Amplitude scaling for PUSCH Amplitude scaling for sounding reference symbols Δf Subcarrier spacing Δf R A Subcarrier spacing for the random access preamble Number of transmission layers υ 3.2 Abbreviations For the purposes of the present document, the following abbreviations apply: CCE CDD CSI PBCH PCFICH PDCCH PDSCH PHICH PMCH PRACH PUCCH PUSCH 4 Control channel element Cyclic delay diversity Channel-State Information Physical broadcast channel Physical control format indicator channel Physical downlink control channel Physical downlink shared channel Physical hybrid-ARQ indicator channel Physical multicast channel Physical random access channel Physical uplink control channel Physical uplink shared channel Frame structure Throughout this specification, unless otherwise noted, the size of various fields in the time domain is expressed as a number of time units Ts = 1 (15000 × 2048) seconds. Downlink and uplink transmissions are organized into radio frames with Tf = 307200 × Ts = 10 ms duration. Two radio frame structures are supported: - Type 1, applicable to FDD, - Type 2, applicable to TDD. ETSI 3GPP TS 36.211 version 10.0.0 Release 10 10 ETSI TS 136 211 V10.0.0 (2011-01) Transmissions in multiple cells can be aggregated where up to four secondary cells can be used in addition to the primary cell. Unless otherwise noted, the description in this specification applies to each of the up to five serving cells. In case of multi-cell aggregation, the UE may assume the same frame structure is used in all the serving cells. 4.1 Frame structure type 1 Frame structure type 1 is applicable to both full duplex and half duplex FDD. Each radio frame is Tf = 307200 ⋅ Ts = 10 ms long and consists of 20 slots of length Tslot = 15360 ⋅ Ts = 0.5 ms , numbered from 0 to 19. A subframe is defined as two consecutive slots where subframe i consists of slots 2i and 2i + 1 . For FDD, 10 subframes are available for downlink transmission and 10 subframes are available for uplink transmissions in each 10 ms interval. Uplink and downlink transmissions are separated in the frequency domain. In half-duplex FDD operation, the UE cannot transmit and receive at the same time while there are no such restrictions in full-duplex FDD. Figure 4.1-1: Frame structure type 1. 4.2 Frame structure type 2 Frame structure type 2 is applicable to TDD. Each radio frame of length Tf = 307200 ⋅ Ts = 10 ms consists of two halfframes of length 153600 ⋅ Ts = 5 ms each. Each half-frame consists of five subframes of length 30720 ⋅ Ts = 1 ms . The supported uplink-downlink configurations are listed in Table 4.2-2 where, for each subframe in a radio frame, 'D' denotes the subframe is reserved for downlink transmissions, 'U' denotes the subframe is reserved for uplink transmissions and 'S' denotes a special subframe with the three fields DwPTS, GP and UpPTS. The length of DwPTS and UpPTS is given by Table 4.2-1 subject to the total length of DwPTS, GP and UpPTS being equal to 30720 ⋅ Ts = 1 ms . Each subframe i is defined as two slots, 2i and 2i + 1 of length Tslot = 15360 ⋅ Ts = 0.5 ms in each subframe. Uplink-downlink configurations with both 5 ms and 10 ms downlink-to-uplink switch-point periodicity are supported. In case of 5 ms downlink-to-uplink switch-point periodicity, the special subframe exists in both half-frames. In case of 10 ms downlink-to-uplink switch-point periodicity, the special subframe exists in the first half-frame only. Subframes 0 and 5 and DwPTS are always reserved for downlink transmission. UpPTS and the subframe immediately following the special subframe are always reserved for uplink transmission. In case multiple cells are aggregated, the UE may assume the same uplink-downlink configuration across all the cells and that the guard period of the special subframe in the different cells have an overlap of at least 1456 ⋅ Ts . ETSI 3GPP TS 36.211 version 10.0.0 Release 10 11 ETSI TS 136 211 V10.0.0 (2011-01) Figure 4.2-1: Frame structure type 2 (for 5 ms switch-point periodicity). Table 4.2-1: Configuration of special subframe (lengths of DwPTS/GP/UpPTS). Special subframe configuration Normal cyclic prefix in downlink DwPTS UpPTS Normal Extended cyclic prefix cyclic prefix in uplink in uplink Extended cyclic prefix in downlink DwPTS UpPTS Normal cyclic Extended cyclic prefix in uplink prefix in uplink 0 6592 ⋅ Ts 7680 ⋅ Ts 1 19760 ⋅ Ts 20480 ⋅ Ts 2 21952 ⋅ Ts 3 24144 ⋅ Ts 25600 ⋅ Ts 4 26336 ⋅ Ts 7680 ⋅ Ts 5 6592 ⋅ Ts 20480 ⋅ Ts 6 19760 ⋅ Ts 7 21952 ⋅ Ts 8 24144 ⋅ Ts 2192 ⋅ Ts 4384 ⋅ Ts 2560 ⋅ Ts 23040 ⋅ Ts 2192 ⋅ Ts 2560 ⋅ Ts 4384 ⋅ Ts 5120 ⋅ Ts 23040 ⋅ Ts 5120 ⋅ Ts - - - - - - Table 4.2-2: Uplink-downlink configurations. Uplink-downlink configuration 0 1 2 3 4 5 6 5 0 D D D D D D D 1 S S S S S S S 2 U U U U U U U Subframe number 34567 UUDSU UDDSU DDDSU UUDDD UDDDD DDDDD UUDSU 8 U U D D D D U 9 U D D D D D D Uplink 5.1 Downlink-to-Uplink Switch-point periodicity 5 ms 5 ms 5 ms 10 ms 10 ms 10 ms 5 ms Overview The smallest resource unit for uplink transmissions is denoted a resource element and is defined in section 5.2.2. ETSI 3GPP TS 36.211 version 10.0.0 Release 10 5.1.1 12 ETSI TS 136 211 V10.0.0 (2011-01) Physical channels An uplink physical channel corresponds to a set of resource elements carrying information originating from higher layers and is the interface defined between 36.212 and 36.211. The following uplink physical channels are defined: - Physical Uplink Shared Channel, PUSCH - Physical Uplink Control Channel, PUCCH - Physical Random Access Channel, PRACH 5.1.2 Physical signals An uplink physical signal is used by the physical layer but does not carry information originating from higher layers. The following uplink physical signals are defined: - Reference signal 5.2 Slot structure and physical resources 5.2.1 Resource grid UL UL R The transmitted signal in each slot is described by one or several resource grids of N RB N scB subcarriers and N symb UL SC-FDMA symbols. The resource grid is illustrated in Figure 5.2.1-1. The quantity N RB depends on the uplink transmission bandwidth configured in the cell and shall fulfil min, UL max, N RB UL ≤ N RB ≤ N RB UL min, max, where N RB UL = 6 and N RB UL = 110 are the smallest and largest uplink bandwidths, respectively, supported by the UL current version of this specification. The set of allowed values for N RB is given by [7]. The number of SC-FDMA symbols in a slot depends on the cyclic prefix length configured by the higher layer parameter UL-CyclicPrefixLength and is given in Table 5.2.3-1. An antenna port is defined such that the channel over which a symbol on the antenna port is conveyed can be inferred from the channel over which another symbol on the same antenna port is conveyed. There is one resource grid per antenna port. The antenna ports used for transmission of a physical channel or signal depends on the number of antenna ports configured for the physical channel or signal as shown in Table 5.2.1-1. The index ~ is used throughout Section p 5 when a sequential numbering of the antenna ports is necessary. ETSI 3GPP TS 36.211 version 10.0.0 Release 10 13 ETSI TS 136 211 V10.0.0 (2011-01) Tslot UL N symb UL RB k = N RB N sc − 1 (k , l ) RB N sc UL RB N RB × N sc UL RB N symb × N sc k =0 l= l=0 UL N symb −1 Figure 5.2.1-1: Uplink resource grid. Table 5.2.1-1: The antenna ports used for different physical channels and signals. Physical channel or signal PUSCH SRS PUCCH Index ~ p 0 1 2 3 0 1 2 3 0 1 Antenna port number p as a function of the number of antenna ports configured for the respective physical channel/signal 1 2 4 10 20 40 21 41 42 43 10 20 40 21 41 42 43 100 200 201 - ETSI 3GPP TS 36.211 version 10.0.0 Release 10 5.2.2 14 ETSI TS 136 211 V10.0.0 (2011-01) Resource elements Each element in the resource grid is called a resource element and is uniquely defined by the index pair (k , l ) in a slot UL UL RB where k = 0,..., N RB N sc − 1 and l = 0,..., N symb − 1 are the indices in the frequency and time domains, respectively. ( Resource element (k , l ) on antenna port p corresponds to the complex value a k ,pl ) . When there is no risk for confusion, ( or no particular antenna port is specified, the index p may be dropped. Quantities a k ,pl ) corresponding to resource elements not used for transmission of a physical channel or a physical signal in a slot shall be set to zero. 5.2.3 Resource blocks UL A physical resource block is defined as N symb consecutive SC-FDMA symbols in the time domain and UL R R N scB consecutive subcarriers in the frequency domain, where N symb and N scB are given by Table 5.2.3-1. A physical UL R resource block in the uplink thus consists of N symb × N scB resource elements, corresponding to one slot in the time domain and 180 kHz in the frequency domain. Table 5.2.3-1: Resource block parameters. R N scB Normal cyclic prefix Extended cyclic prefix UL N symb 12 12 Configuration 7 6 The relation between the physical resource block number nPRB in the frequency domain and resource elements (k , l ) in a slot is given by ⎣ ⎢ ⎢ ⎢ 5.3 k RB N sc ⎦ ⎥ ⎥ ⎥ nPRB = Physical uplink shared channel The baseband signal representing the physical uplink shared channel is defined in terms of the following steps: - scrambling - modulation of scrambled bits to generate complex-valued symbols - mapping of the complex-valued modulation symbols onto one or several transmission layers - transform precoding to generate complex-valued symbols - precoding of the complex-valued symbols - mapping of precoded complex-valued symbols to resource elements - generation of complex-valued time-domain SC-FDMA signal for each antenna port Figure 5.3-1: Overview of uplink physical channel processing. ETSI 3GPP TS 36.211 version 10.0.0 Release 10 5.3.1 15 ETSI TS 136 211 V10.0.0 (2011-01) Scrambling (q (q For each codeword q , the block of bits b ( q ) (0),..., b ( q ) ( M bit) − 1) , where M bit) is the number of bits transmitted in codeword q on the physical uplink shared channel in one subframe, shall be scrambled with a UE-specific scrambling ~ ~ (q) sequence prior to modulation, resulting in a block of scrambled bits b ( q ) (0),..., b ( q ) ( M bit − 1) according to the following pseudo code Set i = 0 (q while i < M bit) if b ( q ) (i ) = x // ACK/NACK or Rank Indication placeholder bits ~ b ( q) (i) = 1 else if b ( q ) (i ) = y // ACK/NACK or Rank Indication repetition placeholder bits ~ ~ b ( q ) (i) = b ( q ) (i − 1) else // Data or channel quality coded bits, Rank Indication coded bits or ACK/NACK coded bits ( ) ~ b ( q ) (i) = b (q ) (i) + c ( q) (i) mod 2 end if end if i=i+1 end while where x and y are tags defined in [3] section 5.2.2.6 and where the scrambling sequence c ( q ) (i ) is given by Section 7.2. cell The scrambling sequence generator shall be initialised with cinit = nRNTI ⋅ 214 + q ⋅ 213 + ⎣ns 2⎦ ⋅ 2 9 + N ID at the start of each subframe where nRNTI corresponds to the RNTI associated with the PUSCH transmission as described in Section 8 in [4]. Up to two codewords can be transmitted in one subframe, i.e., q ∈ {0,1}. In the case of single-codeword transmission, q = 0. 5.3.2 Modulation ~ ~ (q) For each codeword q , the block of scrambled bits b ( q ) (0),..., b ( q ) ( M bit − 1) shall be modulated as described in (q) Section 7.1, resulting in a block of complex-valued symbols d ( q ) (0),..., d ( q ) ( M symb − 1) . Table 5.3.2-1 specifies the modulation mappings applicable for the physical uplink shared channel. Table 5.3.2-1: Uplink modulation schemes. Physical channel PUSCH Modulation schemes QPSK, 16QAM, 64QAM ETSI 3GPP TS 36.211 version 10.0.0 Release 10 5.3.2A 16 ETSI TS 136 211 V10.0.0 (2011-01) Layer mapping The complex-valued modulation symbols for each of the codewords to be transmitted are mapped onto one or two (q) layers. Complex-valued modulation symbols d ( q ) (0),..., d ( q ) ( M symb − 1) for codeword q shall be mapped onto the [ T layer layer layers x(i) = x (0) (i) ... x (υ −1) (i ) , i = 0,1,..., M symb − 1 where υ is the number of layers and M symb is the number of modulation symbols per layer. 5.3.2A.1 Layer mapping for transmission on a single antenna port For transmission on a single antenna port, a single layer is used, υ = 1 , and the mapping is defined by x (0) (i) = d (0) (i) layer (0) with M symb = M symb . 5.3.2A.2 Layer mapping for spatial multiplexing For spatial multiplexing, the layer mapping shall be done according to Table 5.3.2A.2-1. The number of layers υ is less than or equal to the number of antenna ports P used for transmission of the physical uplink shared channel. The case of a single codeword mapped to multiple layers is only applicable when the number of antenna ports used for PUSCH is four. Table 5.3.2A.2-1: Codeword-to-layer mapping for spatial multiplexing. Number of layers Number of codewords Codeword-to-layer mapping layer i = 0,1,..., M symb − 1 1 x (0) (i) = d (0) (i) layer (0 ) M symb = M symb 2 1 x ( 0) (i) = d ( 0) ( 2i ) x (1) (i) = d ( 0) ( 2i + 1) layer (0) M symb = M symb 2 2 2 1 x (0) (i) = d (0) (i) x (1) (i) = d (1) (i) layer (0) (1) M symb = M symb = M symb x (0) (i) = d (0) (i) 3 2 x (1) (i ) = d (1) (2i) x ( 2) (i ) = d (1) (2i + 1) layer (0) (1) M symb = M symb = M symb 2 x ( 0) (i) = d ( 0) ( 2i ) x (1) (i) = d ( 0) ( 2i + 1) 4 5.3.3 2 x ( 2) (i ) = d (1) (2i) x (3) (i ) = d (1) (2i + 1) layer (0) (1) M symb = M symb 2 = M symb 2 Transform precoding layer For each layer λ = 0,1,...,υ − 1 the block of complex-valued symbols x ( λ ) (0),..., x (λ ) ( M symb − 1) is divided into layer P M symb M scUSCH sets, each corresponding to one SC-FDMA symbol. Transform precoding shall be applied according to ETSI 3GPP TS 36.211 version 10.0.0 Release 10 y (λ ) PUSCH (l ⋅ M sc 17 PUSCH M sc −1 1 + k) = ETSI TS 136 211 V10.0.0 (2011-01) PUSCH M sc ∑ x (λ ) PUSCH (l ⋅ M sc + i )e −j 2πik PUSCH M sc i =0 PUSCH k = 0,..., M sc −1 layer PUSCH l = 0,..., M symb M sc −1 layer PUSCH PUSCH RB resulting in a block of complex-valued symbols y ( λ ) (0),..., y ( λ ) ( M symb − 1) . The variable M sc = M RB ⋅ N sc , PUSCH where M RB represents the bandwidth of the PUSCH in terms of resource blocks, and shall fulfil PUSCH UL M RB = 2α 2 ⋅ 3α 3 ⋅ 5α 5 ≤ N RB where α 2 ,α 3 ,α 5 is a set of non-negative integers. 5.3.3A Precoding [ T layer The precoder takes as input a block of vectors y (0) (i ) ... y (υ −1) (i ) , i = 0,1,..., M symb − 1 from the transform [ precoder and generates a block of vectors z (0) (i ) T K elements. 5.3.3A.1 ap z ( P −1) (i) , i = 0,1,..., M symb − 1 to be mapped onto resource Precoding for transmission on a single antenna port For transmission on a single antenna port, precoding is defined by z (0) (i) = y (0) (i) ap ap layer where i = 0,1,..., M symb − 1 , M symb = M symb . 5.3.3A.2 Precoding for spatial multiplexing Precoding for spatial multiplexing is only used in combination with layer mapping for spatial multiplexing as described in Section 5.3.2A.2. Spatial multiplexing supports P = 2 or P = 4 antenna ports where the set of antenna ports used for spatial multiplexing is p ∈ {20,21} and p ∈ {40,41,42,43} , respectively. Precoding for spatial multiplexing is defined by M ⎦ ⎥ ⎥ ⎥ ⎤ M (i ) =W ⎣ ⎢ ⎢ ⎢ ⎡ z ( P −1) y ( 0) (i ) y (υ −1) (i ) ⎦ ⎥ ⎥ ⎥ ⎤ z ( 0) (i ) ⎣ ⎢ ⎢ ⎢ ⎡ ap ap layer where i = 0,1,..., M symb − 1 , M symb = M symb . The precoding matrix W of size P ×υ is given by one of the entries in Table 5.3.3A.2-1 for P = 2 and by Tables 5.3.3A.2-2 through 5.3.3A.2-5 for P = 4 where the entries in each row are ordered from left to right in increasing order of codebook indices. Table 5.3.3A.2-1: Codebook for transmission on antenna ports {0,1} . Codebook index Number of layers υ =1 υ=2 ETSI 18 ETSI TS 136 211 V10.0.0 (2011-01) 1 ⎦⎣ ⎥⎢ ⎤⎡ 1 201 ⎦ ⎥ ⎤ 1 ⎣ ⎢ ⎡ 1 - 2 −1 1 1 ⎦⎣ ⎥⎢ ⎤⎡ 2 - 2j 1 ⎣ ⎢ ⎡ 2 −j 1 - ⎦⎣ ⎥⎢ ⎤⎡ - ⎦⎣ ⎥⎢ ⎤⎡ 1 4 ⎦ ⎥ ⎤ 1 3 - 20 1 5 10 ⎣ ⎢ ⎡ 11 21 0 ⎦ ⎥ ⎤ 3GPP TS 36.211 version 10.0.0 Release 10 0 21 Table 5.3.3A.2-2: Codebook for transmission on antenna ports {0,1,2,3} with υ = 1 . Number of layers υ = 1 1 −j 2 −j 1 1 2 ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ 11 20 j ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 11 20 −1 0 1j 2 −j −1 1 0 1 0 −j ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ 1 1 −j 2 −1 j 1 −j 2j −1 0 ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 1 1j 2 −1 −j 1 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ 1j 2j 1 1 ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ 11 20 1 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ 0 1 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ ETSI ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ 10 2 −j 0 ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 1 1 −j 21 −j 1 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ 10 2j 0 ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 10 2 −1 0 1 1j 21 j ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 10 21 0 1 1 −1 2 −j j 1 −1 2 −1 −1 1 1 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ 1 11 2 −j −j 11 2 −1 1 1 1 ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 16 – 23 1 −1 2j −j 1 −1 21 1 1 1 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ 8 – 15 11 2j j 11 21 −1 1 1 ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 0–7 1 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ Codebook index 3GPP TS 36.211 version 10.0.0 Release 10 19 ETSI TS 136 211 V10.0.0 (2011-01) Table 5.3.3A.2-3: Codebook for transmission on antenna ports {0,1,2,3} with υ = 2 . Number of layers υ = 2 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ 101 2 −1 0 01 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ 101 201 −1 0 1 0 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ 0 0 10 1 2 −1 0 0 −1 10 1 2 0 −1 −1 0 ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 10 1 20 1 10 1 1 1 0 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ 10 1 2 0 −1 10 10 0 0 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 10 1 21 0 0 −1 1 1 1j 0 20 1 0 −1 ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 1j0 20 1 01 0 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ 0 ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 1 10 1 1 −j 0 1 20 0 −1 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ 0 1 −j 0 201 01 ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ ⎢ ⎢ ⎢ ⎢ ⎡ 10 1 21 0 01 1 1 −1 0 20 1 0j 0 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ 10 ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 12 – 15 0 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ 8 – 11 1 1 −1 0 1 20 0 −j 11 0 20 1 0j 1 ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 4–7 11 0 20 1 0 −j 10 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ 0–3 0 ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 1 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ Codebook index Table 5.3.3A.2-4: Codebook for transmission on antenna ports {0,1,2,3} with υ = 3 . Number of layers υ = 3 11 00 2 −1 0 0 0 01 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ 10 01 21 00 −1 0 0 0 0 10 10 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ 10 0 1 21 0 0 100 010 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 10 11 0 0 21 0 0 001 010 00 1010 2 −1 0 0 0 01 ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 11 00 20 01 −1 0 0 ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 11 0 0 20 0 1 100 0 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ 8 – 11 010 00 10 1 0 21 0 0 001 1 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ 1010 20 01 −1 0 0 10 1 0 20 0 1 100 1 100 ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 1 −1 0 0 2010 0 01 11 0 0 20 1 0 001 100 4–7 00 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ 0–3 1 ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 100 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ Codebook index Table 5.3.3A.2-5: Codebook for transmission on antenna ports {0,1,2,3} with υ = 4 . Number of layers υ=4 1000 ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 0 10 1 0 0 20 0 1 0 0001 ETSI ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ Codebook index 3GPP TS 36.211 version 10.0.0 Release 10 5.3.4 20 ETSI TS 136 211 V10.0.0 (2011-01) Mapping to physical resources For each antenna port p used for transmission of the PUSCH in a subframe the block of complex-valued symbols ~ ~ ap z ( p ) (0),..., z ( p ) ( M symb − 1) shall be multiplied with the amplitude scaling factor β PUSCH in order to conform to the ~ transmit power PPUSCH specified in Section 5.1.1.1 in [4], and mapped in sequence starting with z ( p ) (0) to physical resource blocks on antenna port p and assigned for transmission of PUSCH. The relation between the index ~ and the p antenna port number p is given by Table 5.2.1-1. The mapping to resource elements (k , l ) corresponding to the physical resource blocks assigned for transmission and - not used for transmission of reference signals, and not reserved for possible SRS transmission, and not part of an SC-FDMA symbol reserved for possible SRS transmission when a-periodic SRS is configured shall be in increasing order of first the index k , then the index l , starting with the first slot in the subframe. If uplink frequency-hopping is disabled or the resource blocks allocated for PUSCH transmission are not contiguous in frequency, the set of physical resource blocks to be used for transmission is given by nPRB = nVRB where nVRB is obtained from the uplink scheduling grant as described in Section 8.1 in [4]. If uplink frequency-hopping with type 1 PUSCH hopping is enabled, the set of physical resource blocks to be used for transmission is given by Section 8.4.1 in [4]. If uplink frequency-hopping with predefined hopping pattern is enabled, the set of physical resource blocks to be used for transmission in slot ns is given by the scheduling grant together with a predefined pattern according to ( (( )( )) ) sb sb sb sb ~ ~ ~ nPRB (ns ) = nVRB + f hop (i ) ⋅ N RB + N RB − 1 − 2 nVRB mod N RB ⋅ f m (i ) mod( N RB ⋅ N sb ) ⎩ ⎨ ⎧ i= ⎣ns 2⎦ inter − subframe hopping intra and inter − subframe hopping ns ~ nPRB (ns ) nPRB (ns ) = ~ HO nPRB (ns ) + N RB 2 ⎩ ⎪ ⎨ ⎪ ⎧ ⎩ ⎪ ⎨ ⎪ ⎧ ~ nVRB = ⎡ nVRB nVRB − ⎡ HO N RB 2 ⎤ N sb = 1 ⎤ N sb > 1 N sb = 1 N sb > 1 where nVRB is obtained from the scheduling grant as described in Section 8.1 in [4]. The parameter puschHO sb HoppingOffset, N RB , is provided by higher layers. The size N RB of each sub-band is given by, = ⎩ ⎪ ⎨ ⎪ ⎧ sb N RB UL N RB ⎣( UL N RB − HO N RB − HO N RB ) mod 2 N sb ⎦ N sb = 1 N sb > 1 where the number of sub-bands N sb is given by higher layers. The function f m (i ) ∈ {0,1} determines whether mirroring is used or not. The parameter Hopping-mode provided by higher layers determines if hopping is 'inter-subframe' or 'intra and inter-subframe'. The hopping function f hop (i ) and the function f m (i ) are given by ( f hop (i − 1) + ∑ c( k ) × 2 k − ( i ⋅10 +1) ) mod N sb N sb = 2 k = i ⋅10 +1 ⎝ ⎜ ⎜ ⎛ ( f hop (i − 1) + i ⋅10 + 9 ∑ c(k ) × 2 k − (i ⋅10 +1) k = i ⋅10 +1 ETSI ⎠ ⎟ ⎟ ⎞ ⎩ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎧ f hop (i ) = N sb = 1 0 i ⋅10 + 9 mod( N sb − 1) + 1) mod N sb N sb > 2 3GPP TS 36.211 version 10.0.0 Release 10 21 ETSI TS 136 211 V10.0.0 (2011-01) N sb = 1 and intra and inter − subframe hopping i mod 2 ⎩ ⎪ ⎨ ⎪ ⎧ f m (i ) = CURRENT_TX _NB mod 2 c (i ⋅10) N sb = 1 and inter − subframe hopping N sb > 1 where f hop (−1) = 0 and the pseudo-random sequence c (i) is given by section 7.2 and CURRENT_TX_NB indicates the transmission number for the transport block transmitted in slot ns as defined in [8]. The pseudo-random sequence cell generator shall be initialised with cinit = N ID for frame structure type 1 and cinit = 29 ⋅ (nf mod 4) + N ID for frame structure type 2 at the start of each frame. cell 5.4 Physical uplink control channel The physical uplink control channel, PUCCH, carries uplink control information. Simultaneous transmission of PUCCH and PUSCH from the same UE is supported if enabled by higher layers. For frame structure type 2, the PUCCH is not transmitted in the UpPTS field. The physical uplink control channel supports multiple formats as shown in Table 5.4-1. Formats 2a and 2b are supported for normal cyclic prefix only. Table 5.4-1: Supported PUCCH formats. PUCCH format 1 1a 1b 2 2a 2b 3 Modulation scheme N/A BPSK QPSK QPSK QPSK+BPSK QPSK+QPSK QPSK Number of bits per subframe, M bit N/A 1 2 20 21 22 48 cell All PUCCH formats use a cell-specific cyclic shift, n cs (ns , l ) , which varies with the symbol number l and the slot number ns according to cell ncs (ns , l ) = UL ∑i =0 c(8Nsymb ⋅ ns + 8l + i) ⋅ 2i 7 where the pseudo-random sequence c(i ) is defined by section 7.2. The pseudo-random sequence generator shall be cell initialized with cinit = N ID corresponding to the primary cell at the beginning of each radio frame. (2) (1) The physical resources used for PUCCH depends on two parameters, N RB and N cs , given by higher layers. The (2) variable N RB ≥ 0 denotes the bandwidth in terms of resource blocks that are available for use by PUCCH formats (1) 2/2a/2b transmission in each slot. The variable N cs denotes the number of cyclic shift used for PUCCH formats (1) 1/1a/1b in a resource block used for a mix of formats 1/1a/1b and 2/2a/2b. The value of N cs is an integer multiple of ΔPUCCH within the range of {0, 1, …, 7}, where ΔPUCCH is provided by higher layers. No mixed resource block is shift shift (1) present if N cs = 0 . At most one resource block in each slot supports a mix of formats 1/1a/1b and 2/2a/2b. Resources ~ (1, p ) used for transmission of PUCCH formats 1/1a/1b, 2/2a/2b and 3 are represented by the non-negative indices nPUCCH , (1) N cs (3, ~ ) p RB (1) ⋅ ( N sc − N cs − 2) , and nPUCCH , respectively. 8 ⎥ ⎥ ⎥ ⎤ ⎢ ⎢ ⎢ ⎡ (2) (2) RB n PUCCH < N RB N sc + ETSI 3GPP TS 36.211 version 10.0.0 Release 10 5.4.1 22 ETSI TS 136 211 V10.0.0 (2011-01) PUCCH formats 1, 1a and 1b For PUCCH format 1, information is carried by the presence/absence of transmission of PUCCH from the UE. In the remainder of this section, d (0) = 1 shall be assumed for PUCCH format 1. For PUCCH formats 1a and 1b, one or two explicit bits are transmitted, respectively. The block of bits b(0),..., b( M bit − 1) shall be modulated as described in Table 5.4.1-1, resulting in a complex-valued symbol d (0) . The modulation schemes for the different PUCCH formats are given by Table 5.4-1. (α ~ ) PUCCH The complex-valued symbol d (0) shall be multiplied with a cyclically shifted length N seq = 12 sequence ru ,v p (n) for each of the P antenna ports used for PUCCH transmission according to 1 ~ y ( p ) ( n) = P (α ~ ) d (0) ⋅ ru ,v p (n), PUCCH n = 0,1,..., N seq −1 (α ~ ) RS PUCCH where ru ,v p (n) is defined by section 5.5.1 with M sc = N seq . The antenna-port specific cyclic shift α ~ varies p between symbols and slots as defined below. ~ ~ PUCCH The block of complex-valued symbols y ( p ) (0),..., y ( p ) ( N seq − 1) shall be scrambled by S (n s ) and block-wise spread with the antenna-port specific orthogonal sequence wn ( ~ ) (i) according to p oc ( ) PUCCH PUCCH PUCCH z ( p ) m'⋅ N SF ⋅ N seq + m ⋅ N seq + n = S (ns ) ⋅ wn (~) (m) ⋅ y ( p ) (n ) p ~ ~ oc where PUCCH −1 m = 0,..., N SF PUCCH −1 n = 0,..., N seq m' = 0,1 and ⎩ ⎨ ⎧ S (ns ) = 1 e jπ 2 if n′~ (ns ) mod 2 = 0 p otherwise PUCCH PUCCH with N SF = 4 for both slots of normal PUCCH formats 1/1a/1b, and N SF = 4 for the first slot and PUCCH N SF = 3 for the second slot of shortened PUCCH formats 1/1a/1b. The sequence wn ( ~ ) (i) is given by Table 5.4.1-2 p oc and Table 5.4.1-3 and n′~ (ns ) is defined below. p ~ (1, p ) Resources used for transmission of PUCCH format 1, 1a and 1b are identified by a resource index nPUCCH from which ~ (p the orthogonal sequence index noc ) (ns ) and the cyclic shift α ~ (ns , l ) are determined according to p ⎣n′~ (ns ) ⋅ ΔPUCCH N ′⎦ shift p 2 ⋅ ⎣n′~ (ns ) ⋅ ΔPUCCH N ′⎦ shift p ⎩ ⎪ ⎨ ⎪ ⎧ (~ p noc ) (ns )= for normal cyclic prefix for extended cyclic prefix ~ ( RB α ~ (ns , l )= 2π ⋅ ncsp ) (ns , l ) N sc p [n [n ⎩ ⎪ ⎨ ⎪ ⎧ (~ ncsp ) (ns , l )= (n′ (n ) ⋅ Δ (n , l ) + (n′ (n ) ⋅ Δ cell cs (ns , l ) + cell cs s ~ p ~ p ( ~ )) (p RB + noc ) (ns ) mod ΔPUCCH mod N ′ mod N sc shift s PUCCH shift s PUCCH (~ p + noc ) (ns ) shift ) RB 2 mod N ′ mod N sc where ETSI for normal cyclic prefix for extended cyclic prefix 3GPP TS 36.211 version 10.0.0 Release 10 (1) N cs RB N sc ETSI TS 136 211 V10.0.0 (2011-01) ~ (1, p ) (1) if nPUCCH < c ⋅ N cs ΔPUCCH shift otherwise 3 normal cyclic prefix ⎩ ⎨ ⎧ c= ⎩ ⎪ ⎨ ⎪ ⎧ N′ = 23 2 extended cyclic prefix The resource indices within the two resource blocks in the two slots of a subframe to which the PUCCH is mapped are given by ~ (1, p ) nPUCCH (1, ~ ) p (1) RB nPUCCH − c ⋅ N cs ΔPUCCH mod c ⋅ N sc ΔPUCCH shift shift ⎩ ⎪ ⎨ ⎪ ⎧ n′~ (ns ) = p ( )( ~ ) (1, p ) (1) if nPUCCH < c ⋅ N cs ΔPUCCH shift otherwise for ns mod 2 = 0 and by ( RB [c(n′~ (ns − 1) + 1)] mod (cN sc ΔPUCCH + 1)− 1 p shift h ~ / c ⎦ + (h ~ mod c )N ' / ΔPUCCH ⎣p shift p ⎩ ⎪ ⎨ ⎪ ⎧ n′~ ( ns ) = p ) ( ~ (1, p ) (1) nPUCCH ≥ c ⋅ N cs ΔPUCCH shift otherwise ) for ns mod 2 = 1 , where h ~ = n′~ (ns − 1) + d mod cN ' ΔPUCCH , with d = 2 for normal CP and d = 0 for extended CP. p p shif t The parameter deltaPUCCH-Shift ΔPUCCH is provided by higher layers. shift Table 5.4.1-1: Modulation symbol d (0) for PUCCH formats 1a and 1b. PUCCH format b(0),..., b( M bit − 1) 0 1 00 01 1a 1b 10 11 ETSI d (0) 1 −1 1 −j j −1 24 ETSI TS 136 211 V10.0.0 (2011-01) L ( ~) p Sequence index noc (ns ) PUCCH w( N SF − 1) [ Orthogonal sequences w(0) [+ 1 [+ 1 [+ 1 0 1 2 [ Table 5.4.1-3: Orthogonal sequences w(0) − 1 + 1 − 1] − 1 − 1 + 1] PUCCH w( N SF − 1) [ Orthogonal sequences w(0) [1 0 1 1] PUCCH for N SF = 3. PUCCH w( N SF − 1) 1 [1 e j 2π 3 e j 4π 3 [1 e j 4π 3 e j 2π 3 2 5.4.2 PUCCH for N SF =4. + 1 + 1 + 1] L ( ~) p Sequence index noc (ns ) PUCCH w( N SF − 1) L [ Table 5.4.1-2: Orthogonal sequences w(0) L 3GPP TS 36.211 version 10.0.0 Release 10 PUCCH formats 2, 2a and 2b The block of bits b (0),..., b(19) shall be scrambled with a UE-specific scrambling sequence, resulting in a block of ~ ~ scrambled bits b (0),..., b (19) according to ~ b (i ) = (b(i ) + c(i ) ) mod 2 where the scrambling sequence c(i ) is given by Section 7.2. The scrambling sequence generator shall be initialised ( ) cell with cinit = (⎣ns 2⎦ + 1) ⋅ 2 N ID + 1 ⋅ 216 + nRNTI at the start of each subframe where nRNTI is C-RNTI. ~ ~ The block of scrambled bits b (0),..., b (19) shall be QPSK modulated as described in Section 7.1, resulting in a block of complex-valued modulation symbols d (0),..., d (9) . PUCCH Each complex-valued symbol d (0),..., d (9) shall be multiplied with a cyclically shifted length N seq = 12 sequence (α ~ ) ru ,v p (n) for each of the P antenna ports used for PUCCH transmission according to 1 ~ PUCCH z ( p ) ( N seq ⋅ n + i) = (α ~ ) d (n) ⋅ ru , v p (i ) P n = 0,1,...,9 RB i = 0,1,..., N sc − 1 (α ~ ) RS PUCCH . where ru,v p (i) is defined by section 5.5.1 with M sc = N seq ~ (2, p ) Resources used for transmission of PUCCH formats 2/2a/2b are identified by a resource index nPUCCH from which the cyclic shift α ~ (ns , l ) is determined according to p ~ ( R α ~ (ns , l ) = 2π ⋅ ncsp ) (ns , l ) N scB p ETSI 3GPP TS 36.211 version 10.0.0 Release 10 25 ETSI TS 136 211 V10.0.0 (2011-01) where ( ~ ) ( cell RB ncsp ) (ns , l ) = ncs (ns , l ) + n′~ (ns ) mod N sc p and ~ ⎩ ⎪ ⎨ ⎪ ⎧ n′~ (ns ) = p (2, p ) RB nPUCCH mod N sc ( (2, ~ ) p nPUCCH ~ ( 2, p ) RB (2) if nPUCCH < N sc N RB ) (1) RB + N cs + 1 mod N sc otherwise for ns mod 2 = 0 and by [N (n′ (n − 1) + 1)]mod(N (N − 2 − n )mod N ⎩ ⎪ ⎨ ⎪ ⎧ n′~ ( ns ) = p RB sc RB sc ~ p s RB sc RB sc ( 2, ~ ) p PUCCH ) ~ ( 2, p ) RB (2) + 1 − 1 if nPUCCH < N sc N RB otherwise for ns mod 2 = 1 . For PUCCH formats 2a and 2b, supported for normal cyclic prefix only, the bit(s) b(20),..., b( M bit − 1) shall be modulated as described in Table 5.4.2-1 resulting in a single modulation symbol d (10) used in the generation of the reference-signal for PUCCH format 2a and 2b as described in Section 5.5.2.2.1. Table 5.4.2-1: Modulation symbol d (10) for PUCCH formats 2a and 2b. PUCCH format b(20),..., b( M bit − 1) 0 1 00 01 2a 2b 5.4.2A 10 11 d (10) 1 −1 1 −j j −1 PUCCH format 3 The block of bits b(0),..., b( M bit − 1) shall be scrambled with a UE-specific scrambling sequence, resulting in a block of ~ ~ scrambled bits b (0),..., b ( M bit − 1) according to ~ b (i) = (b(i) + c(i) ) mod 2 where the scrambling sequence c(i ) is given by Section 7.2. The scrambling sequence generator shall be initialised ( ) cell with cinit = (⎣ns 2⎦ + 1) ⋅ 2 N ID + 1 ⋅ 216 + nRNTI at the start of each subframe where nRNTI is the C-RNTI. ~ ~ The block of scrambled bits b (0),..., b ( M bit − 1) shall be QPSK modulated as described in Section 7.1, resulting in a R block of complex-valued modulation symbols d (0),..., d ( M symb − 1) where M symb = M bit 2 = 2 N scB . ~ ( The complex-valued symbols d (0),..., d ( M symb − 1) shall be block-wise spread with the orthogonal sequence wn p ) (i) oc R PUCCH PUCCH sets of N scB values each according to resulting in N SF,0 + N SF,1 ~ = ⎩ ⎪ ⎨ ⎪ ⎧ (~ y n p ) (i ) ( wn p ),0 (n ) ⋅ d (i ) oc PUCCH n < N SF, 0 ~ ( RB wn p ),1 (n ) ⋅ d ( N sc + i ) otherwise oc PUCCH n = n mod N SF, 0 PUCCH PUCCH n = 0,..., N SF, 0 + N SF,1 −1 RB i = 0,1,..., N sc − 1 ETSI 3GPP TS 36.211 version 10.0.0 Release 10 26 ETSI TS 136 211 V10.0.0 (2011-01) PUCCH PUCCH PUCCH where N SF,0 = N SF,1 = 5 for both slots in a subframe using normal PUCCH format 3 and N SF,0 = 5, PUCCH N SF,1 = 4 holds for the first and second slot, respectively, in a subframe using shortened PUCCH format 3. The ~ ~ oc oc ( ( orthogonal sequences wn p ),0 (i ) and wn p ),1 (i ) are given by Table 5.4.2A-1. Resources used for transmission of PUCCH ~ ~ ~ (3, p ) ( p) ( p) formats 3 are identified by a resource index nPUCCH from which the quantities noc,0 and noc,1 are derived according to ~ ~ (p (3, p ) noc,)0 = f 0 (nPUCCH , ns ) ~ ~ ( p) ( 3, p ) noc,1 = f1 (nPUCCH , ns ) Each set of complex-valued symbols shall be cyclically shifted according to (( ) p ~ ( ~ ) (i) = y ( ~ ) i + n cell (n , l ) mod N RB yn p n cs s sc ) cell where ncs (ns , l ) is given by Section 5.4, ns is the slot number within a radio frame and l is the SC-FDMA symbol number within a slot. The shifted sets of complex-valued symbols shall be transform precoded according to z ( ~) p RB (n ⋅ N sc + k) = k= RB N sc −1 1 ∑ RB N sc ~ ( ~ ) (i )e yn p −j 2πik RB N sc i =0 RB 0,..., N sc −1 PUCCH PUCCH n = 0,..., N SF,0 + N SF,1 − 1 (( ) ) PUCCH PUCCH RB resulting in a block of complex-valued symbols z ( p ) (0),..., z ( p ) N SF,0 + N SF,1 N sc − 1 . ~ ~ Table 5.4.2A-1: The orthogonal sequence wnoc (i) . Sequence index noc PUCCH N SF =5 [1 0 1 2 3 4 5.4.3 [1 [1 [1 [1 1 1 1 1] L [ Orthogonal sequence wnoc (0) PUCCH wnoc ( N SF − 1) PUCCH N SF =4 [+ 1 e j 2π 5 e j 4π 5 e j 6π 5 e j 8π 5 e j 4π 5 e j 8π 5 e j 2π 5 e j 6π 5 e j 6π 5 e j 2π 5 e j 8π 5 e j 4π 5 e j 8π 5 e j 6π 5 e j 4π 5 e j 2π 5 + 1 + 1 + 1] [+ 1 − 1 + 1 − 1] [+ 1 − 1 − 1 + 1] [+ 1 + 1 − 1 − 1] - Mapping to physical resources ~ The block of complex-valued symbols z ( p ) (i) shall be multiplied with the amplitude scaling factor β PUCCH in order to conform to the transmit power PPUCCH specified in Section 5.1.2.1 in [4], and mapped in sequence starting with ~ z ( p ) (0) to resource elements. PUCCH uses one resource block in each of the two slots in a subframe. Within the physical resource block used for transmission, the mapping of z ( p ) (i) to resource elements (k , l ) on antenna port p and not used for transmission of reference signals shall be in increasing order of first k , then l and finally the slot p number, starting with the first slot in the subframe. The relation between the index ~ and the antenna port number p is given by Table 5.2.1-1. ~ The physical resource blocks to be used for transmission of PUCCH in slot ns are given by ETSI 3GPP TS 36.211 version 10.0.0 Release 10 m 2 ETSI TS 136 211 V10.0.0 (2011-01) if (m + ns mod 2) mod 2 = 0 UL N RB − 1 − m 2 if (m + ns mod 2) mod 2 = 1 ⎦⎣ ⎥⎢ ⎥⎢ ⎩ ⎪ ⎪ ⎨ ⎦ ⎣⎪ ⎥ ⎢⎪ ⎥ ⎢⎧ nPRB = 27 where the variable m depends on the PUCCH format. For formats 1, 1a and 1b ~ RB c ⋅ N sc ΔPUCCH shift 3 normal cyclic prefix (2) + N RB + ⎢ ⎢ ⎡ (1, p ) (1) nPUCCH − c ⋅ N cs ΔPUCCH shift (1) N cs 8 ⎥ ⎥ ⎤ ⎩ ⎨ ⎧ c= ⎣ ⎢⎩ ⎢⎪ ⎢⎨ ⎪ ⎧ m= ~ (1, p ) (1) if nPUCCH < c ⋅ N cs ΔPUCCH shift ⎦ ⎥ ⎥ ⎥ (2) N RB otherwise 2 extended cyclic prefix and for formats 2, 2a and 2b ⎣ ~ (2, p ) RB m = nPUCCH N sc ⎦ and for format 3 ⎣ ~ (3, p ) PUCCH m = nPUCCH N SF,0 ⎦ Mapping of modulation symbols for the physical uplink control channel is illustrated in Figure 5.4.3-1. In case of simultaneous transmission of sounding reference signal and PUCCH format 1, 1a, 1b or 3 when there is one serving cell configured, a shortened PUCCH format shall be used where the last SC-FDMA symbol in the second slot of a subframe shall be left empty. UL nPRB = N RB − 1 nPRB = 0 m =1 m=3 m=0 m=2 m=2 m=0 m=3 m =1 Figure 5.4.3-1: Mapping to physical resource blocks for PUCCH. 5.5 Reference signals Two types of uplink reference signals are supported: - Demodulation reference signal, associated with transmission of PUSCH or PUCCH - Sounding reference signal, not associated with transmission of PUSCH or PUCCH The same set of base sequences is used for demodulation and sounding reference signals. 5.5.1 Generation of the reference signal sequence Reference signal sequence ru(,α ) (n) is defined by a cyclic shift α of a base sequence ru ,v (n) according to v ETSI 3GPP TS 36.211 version 10.0.0 Release 10 28 ETSI TS 136 211 V10.0.0 (2011-01) RS ru(,α ) (n) = e jαn ru ,v (n), 0 ≤ n < M sc v RS R max, where M sc = mN scB is the length of the reference signal sequence and 1 ≤ m ≤ N RB UL . Multiple reference signal sequences are defined from a single base sequence through different values of α . Base sequences ru ,v (n) are divided into groups, where u ∈ {0,1,...,29} is the group number and v is the base sequence RS R number within the group, such that each group contains one base sequence ( v = 0 ) of each length M sc = mN scB , RS R max, 1 ≤ m ≤ 5 and two base sequences ( v = 0,1 ) of each length M sc = mN scB , 6 ≤ m ≤ N RB UL . The sequence group number u and the number v within the group may vary in time as described in Sections 5.5.1.3 and 5.5.1.4, RS RS respectively. The definition of the base sequence ru ,v (0),..., ru ,v ( M sc − 1) depends on the sequence length M sc . 5.5.1.1 R Base sequences of length 3N scB or larger RS RB RS For M sc ≥ 3N sc , the base sequence ru ,v (0),..., ru ,v ( M sc − 1) is given by RS R ru ,v (n) = xq (n mod N ZC ), 0 ≤ n < M scS where the q th root Zadoff-Chu sequence is defined by xq (m ) = e −j πqm ( m +1) RS N ZC RS , 0 ≤ m ≤ N ZC − 1 with q given by 2q ⎦ ⎣ q = ⎣q + 1 2⎦ + v ⋅ (−1) RS q = N ZC ⋅ (u + 1) 31 RS RS RS The length N ZC of the Zadoff-Chu sequence is given by the largest prime number such that N ZC < M sc . 5.5.1.2 R Base sequences of length less than 3N scB RS R RS RB For M sc = N scB and M sc = 2 N sc , base sequence is given by RS ru ,v (n) = e jϕ ( n )π 4 , 0 ≤ n ≤ M sc − 1 RS R RS R where the value of ϕ (n) is given by Table 5.5.1.2-1 and Table 5.5.1.2-2 for M sc = N scB and M sc = 2 N scB , respectively. ETSI 3GPP TS 36.211 version 10.0.0 Release 10 29 ETSI TS 136 211 V10.0.0 (2011-01) RS R Table 5.5.1.2-1: Definition of ϕ (n) for M sc = N scB . ϕ (0),...,ϕ (11) u 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 -1 1 1 -1 -1 1 -1 -3 1 1 -1 3 1 3 -3 3 1 -3 -3 -1 -1 -1 1 1 1 1 1 -3 -1 3 1 1 1 1 3 -3 3 -1 -3 -3 3 1 -3 3 1 -1 3 1 3 3 -3 3 1 1 1 -3 3 -1 3 -3 3 3 -3 1 1 3 -3 -1 3 -1 -1 -1 1 -3 -1 1 1 1 1 1 1 -1 -3 -1 3 3 -3 -3 -3 -3 -3 3 -3 1 -1 -1 -3 -1 1 3 1 -1 1 3 -3 -3 -1 3 1 3 1 1 -3 -3 1 3 -3 -1 3 -1 3 3 -3 1 1 -1 -3 1 -1 3 1 3 -3 -3 -1 -1 1 -3 -3 1 1 -3 -3 -1 3 1 3 -3 -1 -1 3 -1 -1 -1 -1 1 3 -3 -1 -1 -3 3 1 1 3 -1 3 3 1 -1 1 -3 -3 -3 3 3 -3 3 3 -3 ETSI 1 1 -3 -3 -3 1 1 3 -1 -3 -3 -3 1 1 1 1 3 -3 -3 -1 3 -3 -1 1 -1 3 1 1 3 -1 1 -3 -3 -3 -1 -1 -1 -1 1 1 -1 1 1 3 3 1 3 -3 -3 3 1 -3 3 -1 1 1 -1 -1 -3 3 3 -3 1 1 1 -1 3 1 1 1 -3 3 -3 -1 3 3 -1 3 -1 -3 -1 -3 -3 1 -1 -3 -1 1 3 -3 1 1 -3 -3 -1 3 3 -3 3 1 -3 1 -3 -3 3 1 -1 1 -1 -1 1 1 1 3 -3 -1 3 3 3 3 -3 -3 1 3 1 -3 -3 3 -1 1 3 3 -3 3 -1 -1 3 3 1 -3 -3 -1 -3 -1 -3 -1 -1 -3 -1 1 3 3 -1 -1 3 1 1 1 1 1 -1 3 1 3 1 -3 -1 -1 -3 -1 -1 -3 3 1 1 3 -3 -3 -1 -1 3GPP TS 36.211 version 10.0.0 Release 10 30 ETSI TS 136 211 V10.0.0 (2011-01) RS R Table 5.5.1.2-2: Definition of ϕ (n) for M sc = 2 N scB . ϕ (0),...,ϕ (23) u 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 -1 -3 3 -1 -1 -3 1 -3 -3 1 -1 1 1 3 -3 -1 -1 1 1 1 -1 -3 -3 -1 1 1 -3 -1 -1 1 5.5.1.3 3 3 -1 -3 -1 1 1 3 1 1 1 3 3 -1 -3 -1 -3 3 1 3 -3 -3 -1 -1 -1 -1 -1 -3 -3 1 1 -3 3 1 -1 1 -1 3 3 -3 -3 3 3 -1 3 1 3 -1 1 3 3 1 -3 -1 3 1 1 3 -1 -1 -3 -3 3 1 -3 3 -1 -1 -3 3 -3 -3 1 -1 1 -3 -1 3 1 1 -3 1 3 -1 3 -1 3 3 -1 -1 3 -3 1 3 -3 -1 3 -1 1 3 3 -3 1 -1 3 1 -1 3 1 -1 -3 -1 1 3 -1 3 1 1 1 -3 -1 1 1 -3 -1 1 -3 -3 -1 -1 -1 1 1 -3 1 3 -1 -1 -1 -3 -3 1 -1 3 -3 -1 1 1 -3 -1 1 -3 -3 1 1 3 -3 -1 -3 -3 3 3 -1 -1 -3 -3 -1 -3 3 3 -1 -1 -3 3 3 3 -3 3 -1 3 3 -3 3 1 1 1 3 3 3 -1 -1 1 -1 3 3 1 1 1 -1 -1 -1 1 -1 1 -3 1 -1 -1 -1 -1 -3 3 3 -3 3 -3 -3 1 -3 3 -1 -1 1 3 1 -1 1 -1 -3 3 -3 -1 -3 3 -1 1 -1 -3 1 3 3 -1 3 -1 3 1 1 3 3 -3 -3 -3 -3 1 3 -3 -3 -3 1 3 -1 3 -3 3 -1 -1 -3 -1 -1 -1 1 1 3 -1 -1 -3 -1 1 -1 3 -3 -3 3 -1 1 -1 3 3 1 3 -3 1 3 -3 3 -1 3 -1 -3 1 3 1 1 1 3 1 -1 3 -1 3 -3 -3 -1 1 1 3 1 3 3 -3 3 -3 -3 1 -1 -3 -3 -1 1 3 -3 1 -1 3 -1 1 1 1 -1 3 -1 3 1 3 3 1 3 3 -3 1 1 -1 3 3 3 1 3 3 1 1 3 3 3 1 1 -1 -1 1 -1 -1 -3 3 1 3 3 3 3 -1 1 -1 3 1 -3 -1 -1 1 1 1 -3 -1 1 1 -1 3 -1 -1 1 -1 1 1 -3 -3 -3 3 -1 1 1 1 -3 1 -3 -1 -1 3 -1 -3 -3 -3 1 3 1 -1 1 1 -3 3 1 3 -3 1 1 3 3 -1 -1 -1 -1 1 -1 -1 -1 1 1 -1 1 1 3 -3 -3 1 -1 3 1 -1 1 -1 -1 1 -3 -3 -1 3 3 1 -3 -3 1 3 1 -3 3 -1 3 3 1 3 -3 -1 -3 3 1 -3 -1 3 -1 -3 -3 -1 -3 1 1 -1 -1 1 1 -3 -3 -1 1 -1 -1 -1 1 3 1 -3 1 3 3 -3 3 -3 -3 1 -3 3 -1 1 1 -1 3 -3 -3 -3 -3 -1 1 -3 -3 1 1 3 -3 -3 1 1 -1 -3 1 -3 -3 1 -1 1 -3 -3 1 3 -3 1 3 3 3 1 -1 -1 -3 -1 -3 3 -1 3 1 3 -1 1 1 -1 1 1 3 3 -1 -3 1 -3 -1 -3 -3 1 -1 -1 -3 3 3 -3 1 3 3 -1 3 -3 3 1 -1 -3 -3 -3 -1 -1 -3 1 1 -1 -3 -3 3 -1 -3 -3 1 1 -1 -1 1 -3 1 -1 1 3 -3 -1 3 -1 -3 -3 1 -1 3 -1 -1 1 3 -3 -1 1 -1 -1 1 1 -1 -3 -3 -3 1 -3 -3 -1 1 -3 1 1 -1 3 -1 -1 1 -3 -1 1 -3 -3 3 -1 -1 1 -3 1 -3 1 3 1 -1 3 3 -1 -1 -1 -3 -3 -1 -3 -3 3 3 -1 1 -1 -1 3 Group hopping The sequence-group number u in slot ns is defined by a group hopping pattern f gh (ns ) and a sequence-shift pattern f ss according to ( ) u = f gh (ns ) + f ss mod 30 There are 17 different hopping patterns and 30 different sequence-shift patterns. Sequence-group hopping can be enabled or disabled by means of the cell-specific parameter Group-hopping-enabled provided by higher layers. PUCCH and PUSCH have the same hopping pattern but may have different sequence-shift patterns. The group-hopping pattern f gh (ns ) is the same for PUSCH and PUCCH and given by 0 ∑ if group hopping is disabled 7 c(8ns i =0 i + i ) ⋅ 2 mod 30 if group hopping is enabled ⎠ ⎟ ⎞ ⎝⎩ ⎜⎪ ⎛⎨ ⎪ ⎧ f gh (ns ) = where the pseudo-random sequence c(i ) is defined by section 7.2. The pseudo-random sequence generator shall be cell N ID 30 ⎦ ⎥ ⎥ ⎥ ⎣ ⎢ ⎢ ⎢ initialized with c init = at the beginning of each radio frame. The sequence-shift pattern f ss definition differs between PUCCH and PUSCH. P PUCCH cell For PUCCH, the sequence-shift pattern f ss UCCH is given by f ss = N ID mod 30 . ETSI 3GPP TS 36.211 version 10.0.0 Release 10 31 ETSI TS 136 211 V10.0.0 (2011-01) ( ) PUSCH PUCCH P For PUSCH, the sequence-shift pattern f ss USCH is given by f ss = f ss + Δ ss mod 30 , where Δ ss ∈ {0,1,...,29} is configured by higher layers. 5.5.1.4 Sequence hopping RS R Sequence hopping only applies for reference-signals of length M sc ≥ 6 N scB . RS R For reference-signals of length M sc < 6 N scB , the base sequence number v within the base sequence group is given by v=0. RS R For reference-signals of length M sc ≥ 6 N scB , the base sequence number v within the base sequence group in slot n s is defined by c(ns ) if group hopping is disabled and sequence hopping is enabled ⎩ ⎨ ⎧ v= 0 otherwise where the pseudo-random sequence c(i ) is given by section 7.2. The parameter Sequence-hopping-enabled provided by higher layers determines if sequence hopping is enabled or not. The pseudo-random sequence generator shall be ⎣ ⎢ ⎢ ⎢ 5.5.2 cell N ID P ⋅ 2 5 + f ss USCH at the beginning of each radio frame. 30 ⎦ ⎥ ⎥ ⎥ initialized with c init = Demodulation reference signal 5.5.2.1 Demodulation reference signal for PUSCH 5.5.2.1.1 Reference signal sequence (λ ) The PUSCH demodulation reference signal sequence rPUSCH (⋅) associated with layer λ ∈ {0,1,...,υ − 1} is defined by ( ) (λ ) RS rPUSCH m ⋅ M sc + n = w (λ ) (m)ru(,α λ ) (n ) v where m = 0,1 RS n = 0,..., M sc − 1 and RS P M sc = M scUSCH RS Section 5.5.1 defines the sequence ru(,α λ ) (0),..., ru(,α λ ) ( M sc − 1) . The orthogonal sequence w(λ ) (m) is given by v v [w (0) w λ (1) = [1 1] for DCI format 0 if the higher-layer parameter Activate-DMRS-with OCC is not set, otherwise it is given by Table 5.5.2.1.1-1. λ The cyclic shift α λ in a slot ns is given as α λ = 2πncs,λ 12 with ( ) (1) ( 2) ncs, λ = nDMRS + nDMRS, λ + nPN ( ns ) mod 12 (1) where the values of nDMRS is given by Table 5.5.2.1.1-2 according to the parameter cyclicShift provided by higher (2) layers, nDMRS, λ is given by the cyclic shift for DMRS field in most recent uplink-related DCI [3] for the transport block (2) associated with the corresponding PUSCH transmission where the value of nDMRS, λ is given in Table 5.5.2.1.1-1. ETSI 3GPP TS 36.211 version 10.0.0 Release 10 32 ETSI TS 136 211 V10.0.0 (2011-01) (2) The quantity nDMRS, 0 shall be set to zero, if there is no uplink-related DCI for the same transport block, and - if the initial PUSCH for the same transport block is semi-persistently scheduled, or - if the initial PUSCH for the same transport block is scheduled by the random access response grant. The quantity nPN (ns ) is given by nPN (ns ) = ∑ 7 i =0 UL c(8 N symb ⋅ ns + i ) ⋅ 2 i where the pseudo-random sequence c(i ) is defined by section 7.2. The application of c(i ) is cell-specific. The pseudocell N ID P ⋅ 25 + f ss USCH at the beginning of each radio frame. 30 ⎦ ⎥ ⎥ ⎥ ⎣ ⎢ ⎢ ⎢ random sequence generator shall be initialized with cinit = The vector of reference signals shall be precoded according to M =W ⎣ ⎢ ⎢ ⎢ ⎡ ⎦ ⎥ ⎥ ⎥ ⎤ M ~ ( P −1) rPUSCH ( 0) rPUSCH (υ −1) rPUSCH ⎦ ⎥ ⎥ ⎥ ⎤ ~ ( 0) rPUSCH ⎣ ⎢ ⎢ ⎢ ⎡ where P is the number of antenna ports used for PUSCH transmission. For PUSCH transmission using a single antenna port, P = 1 , W = 1 and υ = 1 . For spatial multiplexing, P = 2 or P = 4 and the precoding matrix W shall be identical to the precoding matrix used in Section 5.3.3A.2 for precoding of the PUSCH in the same subframe. (2) Table 5.5.2.1.1-1: Mapping of Cyclic Shift Field in uplink-related DCI format to nDMRS, λ and [w Cyclic Shift Field in uplink-related DCI format [3] (λ ) (0) w ( λ ) (1) . (2) nDMRS, λ λ =0 λ =1 λ=2 λ =3 000 0 6 3 9 001 6 0 9 3 010 3 9 6 0 011 4 10 7 1 100 2 8 5 11 101 8 2 11 5 110 10 4 1 7 111 9 3 0 6 ETSI λ =0 [w (λ ) (0) w(λ ) (1) λ =1 λ=2 [1 1] [1 1] [1 − 1] [1 − 1] [1 1] [1 1] [1 − 1] [1 − 1] [1 1] [1 − 1] [1 − 1] [1 1] [1 1] [1 − 1] [1 − 1] [1 1] [1 [1 [1 [1 [1 [1 [1 [1 − 1] 1] 1] 1] 1] − 1] − 1] − 1] λ =3 [1 [1 [1 [1 [1 [1 [1 [1 − 1] 1] 1] 1] 1] − 1] − 1] − 1] 3GPP TS 36.211 version 10.0.0 Release 10 33 ETSI TS 136 211 V10.0.0 (2011-01) (1) Table 5.5.2.1.1-2: Mapping of cyclicShift to nDMRS values. cyclicShift 0 1 2 3 4 5 6 7 5.5.2.1.2 (1) nDMRS 0 2 3 4 6 8 9 10 Mapping to physical resources For each antenna port used for transmission of the PUSCH, the sequence ~ ( p ) (⋅) shall be multiplied with the rPUSCH ~ ( ~ ) (0 ) to the resource blocks. The set of amplitude scaling factor β and mapped in sequence starting with r p ~ PUSCH PUSCH physical resource blocks used in the mapping process and the relation between the index ~ and the antenna port p number p shall be identical to the corresponding PUSCH transmission as defined in Section 5.3.4. The mapping to resource elements (k , l ) , with l = 3 for normal cyclic prefix and l = 2 for extended cyclic prefix, in the subframe shall be in increasing order of first k , then the slot number. 5.5.2.2 Demodulation reference signal for PUCCH 5.5.2.2.1 Reference signal sequence ( p) The PUCCH demodulation reference signal sequence rPUCCH (⋅) is defined by ~ ( ) ( p) PUCCH RS RS rPUCCH m' N RS M sc + mM sc + n = w ( p ) (m) z (m)ru ,v p (n ) ~ (α ~ ) ~ where PUCCH m = 0,..., N RS −1 RS n = 0,..., M sc − 1 m' = 0,1 For PUCCH formats 2a and 2b, z (m) equals d (10) for m = 1 , where d (10) is defined in Section 5.4.2. For all other cases, z (m) = 1. (α ~ ) RS The sequence ru ,v p (n) is given by Section 5.5.1 with M sc = 12 where the expression for the cyclic shift α ~ is p determined by the PUCCH format. For PUCCH formats 1, 1a and 1b, α ~ (ns , l ) is given by p ~ ⎣ ( nocp ) (ns )= n′~ (ns ) ⋅ ΔPUCCH N ′ p shift (~ ⋅ ncsp ) (ns , l ) α ~ (ns , l )= 2π p [n [n ⎩ ⎪ ⎨ ⎪ ⎧ (~ ncsp ) (ns , l )= RB N sc (n′ (n ) ⋅ Δ (n , l ) + (n′ (n ) ⋅ Δ cell cs ( ns , l ) + cell cs ⎦ s ~ p ~ p ( )) ~ ( RB + nocp ) (ns ) mod ΔPUCCH mod N ′ mod N sc shift s PUCCH shift s PUCCH (~ + nocp ) (ns ) shift )mod N ′] mod N ETSI RB sc for normal cyclic prefix for extended cyclic prefix 3GPP TS 36.211 version 10.0.0 Release 10 34 ETSI TS 136 211 V10.0.0 (2011-01) cell where n′~ (ns ) , N ′ , ΔPUCCH and ncs (ns , l ) are defined by Section 5.4.1. The number of reference symbols per slot p shift PUCCH N RS and the sequence w (n) are given by Table 5.5.2.2.1-1 and 5.5.2.2.1-2, respectively. For PUCCH formats 2, 2a and 2b, α ~ (ns , l ) is defined by Section 5.4.2. The number of reference symbols per slot p ~ PUCCH N RS and the sequence w ( p ) (n) are given by Table 5.5.2.2.1-1 and 5.5.2.2.1-3, respectively. For PUCCH format 3, α ~ (ns , l ) is given by p ~ RB ( α ~ ( ns , l ) = 2π ⋅ ncsp ) ( ns , l ) N sc p ( ~ ) ( cell RB ncsp ) ( ns , l ) = ncs ( ns , l ) + n ′~ ( ns ) mod N sc p n′~ ( ns ) = f p ( 3, ~ ) p (nPUCCH ) PUCCH and the sequence w (n) are given by Table 5.5.2.2.1-1 and The number of reference symbols per slot N RS 5.5.2.2.1-3, respectively. PUCCH Table 5.5.2.2.1-1: Number of PUCCH demodulation reference symbols per slot N RS . Normal cyclic prefix 3 2 2 [ ~ Table 5.5.2.2.1-2: Orthogonal sequences w ( p ) (0) L PUCCH format 1, 1a, 1b 2, 3 2a, 2b Extended cyclic prefix 2 1 N/A ~ PUCCH w ( p ) ( N RS − 1) for PUCCH formats 1, 1a and 1b. ( ~) p Normal cyclic prefix Sequence index noc (ns ) 0 [1 [1 1 2 [ [1 1 1] e j 2π 3 e j 4π 3 e j 4π 3 e j 2π 3 ~ ~ Extended cyclic prefix [1 1] [1 PUCCH Table 5.5.2.2.1-3: Orthogonal sequences w ( p ) (0) w ( p ) ( N RS − 1) and 3. N/A L Normal cyclic prefix for PUCCH formats 2, 2a, 2b Extended cyclic prefix [1 1] 5.5.2.2.2 − 1] [1] Mapping to physical resources ( p) The sequence rPUCCH (⋅) shall be multiplied with the amplitude scaling factor β PUCCH and mapped in sequence starting ~ ( p) with rPUCCH (0) to resource elements (k , l ) on antenna port p . The mapping shall be in increasing order of first k , then l and finally the slot number. The set of values for k and the relation between the index ~ and the antenna port p ~ number p shall be identical to the values used for the corresponding PUCCH transmission. The values of the symbol index l in a slot are given by Table 5.5.2.2.2-1. ETSI 3GPP TS 36.211 version 10.0.0 Release 10 35 ETSI TS 136 211 V10.0.0 (2011-01) Table 5.5.2.2.2-1: Demodulation reference signal location for different PUCCH formats. Set of values for l Normal cyclic prefix Extended cyclic prefix 2, 3, 4 2, 3 1, 5 3 1, 5 N/A PUCCH format 1, 1a, 1b 2, 3 2a, 2b 5.5.3 Sounding reference signal 5.5.3.1 Sequence generation ( p) The sounding reference signal sequence rSRS (n ) = ru ,v p (n ) is defined by Section 5.5.1, where u is the PUCCH (α ~ ) ~ sequence-group number defined in Section 5.5.1.3 and ν is the base sequence number defined in Section 5.5.1.4. The cyclic shift α ~ of the sounding reference signal is given as p ~ α ~ = 2π p cs,p nSRS , 8 ~ cs, p where nSRS is configured separately for periodic and each configuration of aperiodic sounding by the higher-layer cs, ~ p parameters cyclicShift and cyclicShift-ap, respectively, for each UE and nSRS = {0, 1, 2, 3, 4, 5, 6, 7} . 5.5.3.2 Mapping to physical resources The sequence shall be multiplied with the amplitude scaling factor β SRS in order to conform to the transmit power ~ ( p) PSRS specified in Section 5.1.3.1 in [4], and mapped in sequence starting with rSRS (0) to resource elements (k , l ) on antenna port p according to ~ 2 k ' + k0 ,l = ⎩ ⎪ ⎨ ⎪ ⎧ a ( p) ( p) RS β SRS rSRS (k ' ) k ' = 0,1,..., M sc, b − 1 0 otherwise where the relation between the index ~ and the antenna port p is given by Table 5.2.1-1. The set of antenna ports used p for sounding reference signal transmission is configured independently for periodic and each configuration of aperiodic sounding. The quantity k 0 is the frequency-domain starting position of the sounding reference signal and for b = BSRS R and M sc,S is the length of the sounding reference signal sequence defined as b RS RB M sc,b = mSRS,b N sc 2 UL where mSRS,b is given by Table 5.5.3.2-1 through Table 5.5.3.2-4 for each uplink bandwidth N RB . The cell-specific parameter srs-BandwidthConfig, CSRS ∈ {0,1,2,3,4,5,6,7} and the UE-specific parameter srs-Bandwidth, BSRS ∈ {0,1,2,3} are { }( ) c max UL given by higher layers. For UpPTS, mSRS, 0 shall be reconfigured to mSRS ,0 = max c∈C mSRS ,0 ≤ N RB − 6 N RA if this reconfiguration is enabled by the cell-specific parameter srsMaxUpPts given by higher layers, otherwise if the max reconfiguration is disabled mSRS,0 = mSRS,0 ,where c is a SRS BW configuration and CSRS is the set of SRS BW UL configurations from the Tables 5.5.3.2-1 to 5.5.3.2-4 for each uplink bandwidth N RB , N RA is the number of format 4 PRACH in the addressed UpPTS and derived from Table 5.7.1-4. The frequency-domain starting position k 0 is defined by ′ k0 = k0 + BSRS ∑ 2M b=0 ETSI RS sc,b nb 3GPP TS 36.211 version 10.0.0 Release 10 36 (⎣ ETSI TS 136 211 V10.0.0 (2011-01) ) ⎦ UL RB ' ′ where for normal uplink subframes k 0 = N RB / 2 − mSRS, 0 2 N SC + k TC and for UpPTS k 0 is defined by: UL max RB ( N RB − mSRS,0 ) N sc + k TC if ((nf mod 2) × (2 − N SP ) + nhf ) mod 2 = 0 k TC otherwise ⎩ ⎪ ⎨ ⎪ ⎧ ' k0 = kTC ∈ {0,1} is the UE-specific parameter transmissionComb or transmissionComb-ap for periodic and aperiodic transmission, repsectively, provided by higher layers for the UE, and nb is frequency position index. The variable nhf is equal to 0 for UpPTS in the first half frame and equal to 1 for UpPTS in the second half frame of a radio frame. The frequency hopping of the sounding reference signal is configured by the parameter bhop ∈ {0,1,2,3} , provided by higher-layer parameters srs-HoppingBandwidth and srs-HoppingBandwidth-ap for periodic and aperiodic transmission, respectively. If frequency hopping of the sounding reference signal is not enabled (i.e., bhop ≥ BSRS ), the frequency position index nb remains constant (unless re-configured) and is defined by nb = ⎣4nRRC mSRS,b ⎦mod N b where the parameter nRRC is given by higher-layer parameters freqDomainPosition and freqDomainPosition-ap for periodic and aperiodic transmission, respectively. If frequency hopping of the sounding reference signal is enabled (i.e., bhop < BSRS ), the frequency position indexes nb are defined by ⎣4nRRC mSRS,b ⎦ mod N b {Fb (nSRS ) + ⎣4nRRC mSRS,b ⎦}mod N b ⎩ ⎨ ⎧ nb = b ≤ bhop otherwise UL where N b is given by Table 5.5.3.2-1 through Table 5.5.3.2-4 for each uplink bandwidth N RB , ⎣ ⎦ ⎥ ⎥ ⎥ Π b'−1bhop N b' b= + ⎣ ⎢ ⎢ ⎢ nSRS mod Π b '=bhop N b ' b nSRS mod Π b'=bhop N b' b 2Π b −1bhop N b ' b '= N b / 2 nSRS / Π b'−1bhop N b' b= ⎦ ⎦ ⎥ ⎥ ⎥ ⎦ ⎣ ⎣ ⎢ ⎢ ⎢ ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ Fb (nSRS ) = ( N b / 2) if N b even if N b odd where N bhop = 1 regardless of the N b value on Table 5.5.3.2-1 through Table 5.5.3.2-4, and ns Toffset , + 10 Toffset_max ⎦ ⎥ ⎥ ⎥ ⎣ ⎢⎦ ⎢⎥ ⎢⎥ ⎣ ⎢ ⎢ ⎩ ⎣⎪ ⎪ ⎨ ⎪ ⎪ ⎧ nSRS = 2 N SP nf + 2( N SP − 1) (nf × 10 + ns / 2 ) / TSRS , for 2 ms SRS periodicity of frame structure type 2 otherwise ⎦ ⎦ ⎣ counts the number of UE-specific SRS transmissions, where TSRS is UE-specific periodicity of SRS transmission defined in section 8.2 of [4], Toffset is SRS subframe offset defined in Table 8.2-2 of [4] and Toffset_max is the maximum value of Toffset for a certain configuration of SRS subframe offset. For all subframes other than special subframes, the sounding reference signal shall be transmitted in the last symbol of the subframe. UL Table 5.5.3.2-1: mSRS,b and N b , b = 0,1,2,3 , values for the uplink bandwidth of 6 ≤ N RB ≤ 40 . a) SRS bandwidt h configura a) SRSBandwidth BSRS = 0 a) SRSBandwidth BSRS = 1 ETSI a) SRSBandwidth BSRS = 2 a) SRSBandwidth BSRS = 3 3GPP TS 36.211 version 10.0.0 Release 10 37 ETSI TS 136 211 V10.0.0 (2011-01) b) mS 0 1 2 3 4 5 6 7 b) N 0 b) mS b) N 1 a) mS a) N 2 a) mS a) N 3 36 32 24 20 16 12 8 4 1 1 1 1 1 1 1 1 12 16 4 4 4 4 4 4 3 2 6 5 4 3 2 1 4 8 4 4 4 4 4 4 3 2 1 1 1 1 1 1 4 4 4 4 4 4 4 4 1 2 1 1 1 1 1 1 UL Table 5.5.3.2-2: mSRS,b and N b , b = 0,1,2,3 , values for the uplink bandwidth of 40 < N RB ≤ 60 . a) SRS bandwidt h configura tion a) SRSBandwidth a) SRSBandwidth BSRS = 0 a) SRSBandwidth BSRS = 1 a) SRSBandwidth BSRS = 2 BSRS = 3 b) mS b) N 0 b) mS b) N 1 a) mS a) N 2 a) mS a) N 3 48 48 40 36 32 24 20 16 1 1 1 1 1 1 1 1 24 16 20 12 16 4 4 4 2 3 2 3 2 6 5 4 12 8 4 4 8 4 4 4 2 2 5 3 2 1 1 1 4 4 4 4 4 4 4 4 3 2 1 1 2 1 1 1 b) CSRS 0 1 2 3 4 5 6 7 UL Table 5.5.3.2-3: mSRS,b and N b , b = 0,1,2,3 , values for the uplink bandwidth of 60 < N RB ≤ 80 . a) SRS bandwidt h configura tion a) SRSBandwidth a) SRSBandwidth BSRS = 0 a) SRSBandwidth BSRS = 1 a) SRSBandwidth BSRS = 2 BSRS = 3 b) mS b) N 0 b) mS b) N 1 a) mS a) N 2 a) mS a) N 3 72 64 60 48 48 40 36 32 1 1 1 1 1 1 1 1 24 32 20 24 16 20 12 16 3 2 3 2 3 2 3 2 12 16 4 12 8 4 4 8 2 2 5 2 2 5 3 2 4 4 4 4 4 4 4 4 3 4 1 3 2 1 1 2 b) CSRS 0 1 2 3 4 5 6 7 UL Table 5.5.3.2-4: mSRS,b and N b , b = 0,1,2,3 , values for the uplink bandwidth of 80 < N RB ≤ 110 . a) SRS bandwidt h configura tion a) SRSBandwidth BSRS = 0 b) mS b) N 0 a) SRSBandwidth BSRS = 1 b) mS ETSI b) N1 a) SRSBandwidth BSRS = 2 a) mS a) N 2 a) SRSBandwidth BSRS = 3 a) mS a) N 3 3GPP TS 36.211 version 10.0.0 Release 10 38 ETSI TS 136 211 V10.0.0 (2011-01) b) CSRS 0 1 2 3 4 5 6 7 5.5.3.3 96 96 80 72 64 60 48 48 1 1 1 1 1 1 1 1 48 32 40 24 32 20 24 16 2 3 2 3 2 3 2 3 24 16 20 12 16 4 12 8 2 2 2 2 2 5 2 2 4 4 4 4 4 4 4 4 6 4 5 3 4 1 3 2 Sounding reference signal subframe configuration The cell-specific subframe configuration period TSFC and the cell-specific subframe offset Δ SFC for the transmission of sounding reference signals are listed in Tables 5.5.3.3-1 and 5.5.3.3-2, for frame structures type 1 and 2 respectively, where the parameter srs-SubframeConfig is provided by higher layers. Sounding reference signal subframes are the subframes satisfying ⎣ns / 2⎦ mod TSFC ∈ Δ SFC . For frame structure type 2, sounding reference signal is transmitted only in configured UL subframes or UpPTS. Table 5.5.3.3-1: Frame structure type 1 sounding reference signal subframe configuration. a) srsSubframeConfig 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 a) Configuration Period TSFC (subfram es) a) Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 1 2 2 5 5 5 5 5 5 10 10 10 10 10 10 reserved a) Transmission offset Δ SFC (subframes) {0} {0} {1} {0} {1} {2} {3} {0,1} {2,3} {0} {1} {2} {3} {0,1,2,3,4,6,8} {0,1,2,3,4,5,6,8} reserved Table 5.5.3.3-2: Frame structure type 2 sounding reference signal subframe configuration. a) srsSubframeConfig a) Configuration Period TSFC (subframes) a) Binary ETSI a) Transmission offset Δ SFC (subframes) 3GPP TS 36.211 version 10.0.0 Release 10 39 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 5.6 ETSI TS 136 211 V10.0.0 (2011-01) 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 5 5 5 5 5 5 5 5 10 10 10 10 10 10 reserved reserved {1} {1, 2} {1, 3} {1, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {1, 2, 3, 4} {1, 2, 6} {1, 3, 6} {1, 6, 7} {1, 2, 6, 8} {1, 3, 6, 9} {1, 4, 6, 7} reserved reserved SC-FDMA baseband signal generation This section applies to all uplink physical signals and physical channels except the physical random access channel. The time-continuous signal sl( p ) (t ) for antenna port p in SC-FDMA symbol l in an uplink slot is defined by ⎣ k =− UL RB N RB N sc a ( p−)) ⋅ e ( k /2 j 2π (k +1 2 )Δf (t − N CP ,l Ts ) ,l ⎦ ∑ ⎡ (t ) = UL RB N RB N sc / 2 −1 ⎤ sl( p ) RB ( for 0 ≤ t < (N CP ,l + N )× Ts where k ( − ) = k + N UL N sc 2 , N = 2048 , Δf = 15 kHz and a k ,pl ) is the content of resource RB ⎣ element (k , l ) on antenna port p . ⎦ The SC-FDMA symbols in a slot shall be transmitted in increasing order of l , starting with l = 0 , where SC-FDMA symbol l > 0 starts at time ∑ l −1 l ′= 0 ( N CP ,l ′ + N )Ts within the slot. Table 5.6-1 lists the values of N CP ,l that shall be used. Table 5.6-1: SC-FDMA parameters. Configuration Cyclic prefix length N CP ,l 160 for l = 0 144 for l = 1,2,...,6 512 for l = 0,1,...,5 Normal cyclic prefix Extended cyclic prefix 5.7 Physical random access channel 5.7.1 Time and frequency structure The physical layer random access preamble, illustrated in Figure 5.7.1-1, consists of a cyclic prefix of length TCP and a sequence part of length TSEQ . The parameter values are listed in Table 5.7.1-1 and depend on the frame structure and the random access configuration. Higher layers control the preamble format. ETSI 3GPP TS 36.211 version 10.0.0 Release 10 40 ETSI TS 136 211 V10.0.0 (2011-01) PC ecneuqeS TCP TSEQ Figure 5.7.1-1: Random access preamble format. Table 5.7.1-1: Random access preamble parameters. Preamble format TCP TSEQ 0 3168 ⋅ Ts 24576 ⋅ Ts 1 21024 ⋅ Ts 24576 ⋅ Ts 2 6240 ⋅ Ts 2 ⋅ 24576 ⋅ Ts 3 21024 ⋅ Ts 2 ⋅ 24576 ⋅ Ts 4* 448 ⋅ Ts 4096 ⋅ Ts * Frame structure type 2 and special subframe configurations with UpPTS lengths 4384 ⋅ Ts and 5120 ⋅ Ts only. The transmission of a random access preamble, if triggered by the MAC layer, is restricted to certain time and frequency resources. These resources are enumerated in increasing order of the subframe number within the radio frame and the physical resource blocks in the frequency domain such that index 0 correspond to the lowest numbered physical resource block and subframe within the radio frame. PRACH resources within the radio frame are indicated by a PRACH Resource Index, where the indexing is in the order of appearance in Table 5.7.1-2 and Table 5.7.1-4. For frame structure type 1 with preamble format 0-3, there is at most one random access resource per subframe. Table 5.7.1-2 lists the preamble formats according to Table 5.7.1-1 and the subframes in which random access preamble transmission is allowed for a given configuration in frame structure type 1. The parameter prach-ConfigurationIndex is given by higher layers. The start of the random access preamble shall be aligned with the start of the corresponding uplink subframe at the UE assuming N TA = 0 , where N TA is defined in section 8.1. For PRACH configurations 0, 1, 2, 15, 16, 17, 18, 31, 32, 33, 34, 47, 48, 49, 50 and 63 the UE may for handover purposes assume an absolute value of the relative time difference between radio frame i in the current cell and the target cell of less than 153600 ⋅ Ts . The RA first physical resource block nPRB allocated to the PRACH opportunity considered for preamble formats 0, 1, 2 and 3 is RA RA RA defined as nPRB = nPRB offset , where the parameter prach-FrequencyOffset, nPRBoffset is expressed as a physical resource RA UL block number configured by higher layers and fulfilling 0 ≤ nPRBoffset ≤ N RB − 6 . ETSI 3GPP TS 36.211 version 10.0.0 Release 10 41 ETSI TS 136 211 V10.0.0 (2011-01) Table 5.7.1-2: Frame structure type 1 random access configuration for preamble formats 0-3. 0 0 0 0 0 0 0 0 0 0 0 0 0 System frame number Even Even Even Any Any Any Any Any Any Any Any Any Any Preamble Format 1 4 7 1 4 7 1, 6 2 ,7 3, 8 1, 4, 7 2, 5, 8 3, 6, 9 0, 2, 4, 6, 8 PRACH Configuration Index 32 33 34 35 36 37 38 39 40 41 42 43 44 2 2 2 2 2 2 2 2 2 2 2 2 2 System frame number Even Even Even Any Any Any Any Any Any Any Any Any Any Any 1, 3, 5, 7, 9 45 2 Any 0 Any 46 N/A N/A 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 N/A 1 Even Even Even Even Any Any Any Any Any Any Any Any Any Any Any N/A Even 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 9 1 4 7 1 4 7 1, 6 2 ,7 3, 8 1, 4, 7 2, 5, 8 3, 6, 9 0, 2, 4, 6, 8 1, 3, 5, 7, 9 N/A 9 1 4 7 1 4 7 1, 6 2 ,7 3, 8 1, 4, 7 2, 5, 8 3, 6, 9 0, 2, 4, 6, 8 1, 3, 5, 7, 9 N/A 13 0 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 2 3 3 3 3 3 3 3 3 3 3 3 3 N/A N/A N/A 3 Even Even Even Even Any Any Any Any Any Any Any Any Any N/A N/A N/A Even 9 1 4 7 1 4 7 1, 6 2 ,7 3, 8 1, 4, 7 2, 5, 8 3, 6, 9 N/A N/A N/A 9 PRACH Configuration Index 0 1 2 3 4 5 6 7 8 9 10 11 12 Preamble Format Subframe number Subframe number For frame structure type 2 with preamble formats 0-4, there might be multiple random access resources in an UL subframe (or UpPTS for preamble format 4) depending on the UL/DL configuration [see table 4.2-2]. Table 5.7.1-3 lists PRACH configurations allowed for frame structure type 2 where the configuration index corresponds to a certain combination of preamble format, PRACH density value, DRA and version index, rRA . The parameter prachConfigurationIndex is given by higher layers. For frame structure type 2 with PRACH configuration 0, 1, 2, 20, 21, 22, 30, 31, 32, 40, 41, 42, 48, 49 or 50, the UE may for handover purposes assume an absolute value of the relative time difference between radio frame i in the current cell and the target cell is less than 153600 ⋅ Ts . ETSI 3GPP TS 36.211 version 10.0.0 Release 10 42 ETSI TS 136 211 V10.0.0 (2011-01) Table 5.7.1-3: Frame structure type 2 random access configurations for preamble formats 0-4. PRACH configuration Index Preamble Format 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 Density Per 10 ms DRA 0.5 0.5 0.5 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 0.5 0.5 0.5 1 1 2 3 4 5 6 0.5 0.5 Version rRA PRACH configuration Index Preamble Format 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 0 1 2 0 1 0 0 0 0 0 0 1 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 N/A N/A N/A N/A N/A N/A Density Per 10 ms DRA 0.5 1 1 2 3 4 5 6 0.5 0.5 0.5 1 1 2 3 4 0.5 0.5 0.5 1 1 2 3 4 5 6 N/A N/A N/A N/A N/A N/A Version rRA 2 0 1 0 0 0 0 0 0 1 2 0 1 0 0 0 0 1 2 0 1 0 0 0 0 0 N/A N/A N/A N/A N/A N/A Table 5.7.1-4 lists the mapping to physical resources for the different random access opportunities needed for a certain ( 0 ) (1) ( 2 ) PRACH density value, DRA . Each quadruple of the format ( f RA , t RA , t RA , t RA ) indicates the location of a specific ( 0) random access resource, where f RA is a frequency resource index within the considered time instance, t RA = 0,1,2 indicates whether the resource is reoccurring in all radio frames, in even radio frames, or in odd radio frames, (1) respectively, t RA = 0,1 indicates whether the random access resource is located in first half frame or in second half ( 2) frame, respectively, and where t RA is the uplink subframe number where the preamble starts, counting from 0 at the first uplink subframe between 2 consecutive downlink-to-uplink switch points, with the exception of preamble format 4 ( 2) where t RA is denoted as (*). The start of the random access preamble formats 0-3 shall be aligned with the start of the corresponding uplink subframe at the UE assuming N TA = 0 and the random access preamble format 4 shall start 4832 ⋅ Ts before the end of the UpPTS at the UE, where the UpPTS is referenced to the UE"s uplink frame timing assuming N TA = 0 . The random access opportunities for each PRACH configuration shall be allocated in time first and then in frequency if and only if time multiplexing is not sufficient to hold all opportunities of a PRACH configuration needed for a certain density value DRA without overlap in time. For preamble format 0-3, the frequency multiplexing shall be done according to ETSI 3GPP TS 36.211 version 10.0.0 Release 10 ETSI TS 136 211 V10.0.0 (2011-01) f RA , 2 ⎣ ⎢ ⎢ ⎣ ⎢ ⎢ UL RA N RB − 6 − nPRB offset − 6 if f RA mod 2 = 0 f RA , otherwise 2 ⎦ ⎥ ⎥ ⎦ ⎥ ⎥ ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ RA nPRB = RA nPRB offset + 6 43 UL RA where N RB is the number of uplink resource blocks, nPRB is the first physical resource block allocated to the PRACH RA opportunity considered and where the parameter prach-FrequencyOffset, nPRB offset is the first physical resource block available for PRACH expressed as a physical resource block number configured by higher layers and fulfilling RA UL 0 ≤ nPRBoffset ≤ N RB − 6 . For preamble format 4, the frequency multiplexing shall be done according to 6 f RA , ⎩ ⎪ ⎨ ⎪ ⎧ RA nPRB = ( ) (1) if (nf mod 2) × (2 − N SP ) + t RA mod 2 = 0 UL N RB − 6( f RA + 1), otherwise where nf is the system frame number and where N SP is the number of DL to UL switch points within the radio frame. Each random access preamble occupies a bandwidth corresponding to 6 consecutive resource blocks for both frame structures. ETSI 3GPP TS 36.211 version 10.0.0 Release 10 44 ETSI TS 136 211 V10.0.0 (2011-01) Table 5.7.1-4: Frame structure type 2 random access preamble mapping in time and frequency. PRACH configuration Index (See Table 5.7.1-3) 0 1 2 3 4 5 6 7 8 9 10 11 12 1 (0,1,0,2) (0,2,0,2) (0,1,1,2) (0,0,0,2) (0,0,1,2) (0,0,0,1) (0,0,0,2) (0,0,1,2) (0,0,0,1) (0,0,1,1) (0,0,0,0) (0,0,1,0) (0,0,0,1) (0,0,0,2) (0,0,1,2) (0,0,0,0) (0,0,1,0) (0,0,1,1) N/A (0,1,0,1) (0,2,0,1) (0,1,1,1) (0,0,0,1) (0,0,1,1) (0,0,0,0) (0,0,0,1) (0,0,1,1) (0,0,0,0) (0,0,1,0) N/A (0,1,0,0) (0,2,0,0) (0,1,1,0) (0,0,0,0) (0,0,1,0) N/A (0,0,0,0) (0,0,1,0) N/A (0,0,0,0) (0,0,0,1) (0,0,1,1) (0,0,0,1) (0,0,1,0) (0,0,1,1) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) N/A (0,0,0,0) (0,0,1,0) (1,0,0,0) (0,0,0,0) (0,0,1,0) (1,0,1,0) N/A N/A N/A (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) (1,0,0,1) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) (1,0,1,1) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) (1,0,0,0) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) (1,0,0,1) (1,0,1,1) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) (1,0,0,0) (1,0,1,0) (0,1,0,0) (0,2,0,0) (0,0,0,0) (0,0,1,0) (1,0,0,0) (1,0,1,0) (2,0,0,0) (0,0,0,0) (0,0,1,0) (1,0,0,0) (1,0,1,0) (2,0,1,0) N/A 19 (0,0,0,1) (0,0,0,2) (0,0,1,1) (0,0,1,2) (0,0,0,0) (0,0,0,2) (0,0,1,0) (0,0,1,2) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) (0,0,0,0) (0,0,0,1) (0,0,0,2) (0,0,1,1) (0,0,1,2) (0,0,0,1) (0,0,0,2) (0,0,1,0) (0,0,1,1) (0,0,1,2) (0,0,0,0) (0,0,0,1) (0,0,0,2) (0,0,1,0) (0,0,1,2) (0,0,0,0) (0,0,0,1) (0,0,0,2) (0,0,1,0) (0,0,1,1) (0,0,1,2) N/A 20 / 30 21 / 31 (0,1,0,1) (0,2,0,1) 13 14 15 16 17 18 UL/DL configuration (See Table 4.2-2) 2 3 4 0 5 6 (0,1,0,1) (0,2,0,1) (0,1,0,0) (0,0,0,1) (0,0,0,0) N/A (0,0,0,0) (0,0,0,1) N/A (0,1,0,0) (0,2,0,0) N/A (0,0,0,0) N/A N/A (0,0,0,0) (1,0,0,0) N/A N/A N/A (0,0,0,0) (0,0,0,1) (1,0,0,1) (0,0,0,0) (0,0,0,1) (1,0,0,0) N/A (0,0,0,0) (1,0,0,0) (2,0,0,0) N/A (0,0,0,0) (0,0,0,1) (1,0,0,0) (1,0,0,1) N/A (0,0,0,0) (1,0,0,0) (2,0,0,0) (3,0,0,0) N/A N/A N/A (0,0,0,0) (0,0,0,1) (1,0,0,0) (1,0,0,1) (2,0,0,1) (0,0,0,0) (0,0,0,1) (1,0,0,0) (1,0,0,1) (2,0,0,0) N/A (0,0,0,0) (1,0,0,0) (2,0,0,0) (3,0,0,0) (4,0,0,0) N/A N/A N/A (0,0,0,0) (0,0,1,0) (1,0,0,0) (1,0,1,0) (2,0,0,0) (2,0,1,0) N/A (0,0,0,0) (0,0,0,1) (0,0,0,2) (1,0,0,2) (0,0,0,0) (0,0,0,1) (0,0,0,2) (1,0,0,1) (0,0,0,0) (0,0,0,1) (0,0,0,2) (1,0,0,0) (0,0,0,0) (0,0,0,1) (0,0,0,2) (1,0,0,1) (1,0,0,2) (0,0,0,0) (0,0,0,1) (0,0,0,2) (1,0,0,0) (1,0,0,2) (0,0,0,0) (0,0,0,1) (0,0,0,2) (1,0,0,0) (1,0,0,1) (0,0,0,0) (0,0,0,1) (0,0,0,2) (1,0,0,0) (1,0,0,1) (1,0,0,2) N/A (0,1,0,2) (0,2,0,2) (0,1,1,1) (0,0,0,2) (0,0,1,1) (0,0,0,1) (0,0,0,2) (0,0,1,1) (0,0,0,1) (0,0,1,0) (0,0,0,0) (0,0,1,1) (0,0,0,1) (0,0,0,2) (0,0,1,1) (0,0,0,0) (0,0,0,2) (0,0,1,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) (0,0,0,1) (0,0,0,2) (0,0,1,0) (0,0,1,1) (0,0,0,0) (0,0,0,1) (0,0,0,2) (0,0,1,1) (0,0,0,0) (0,0,0,2) (0,0,1,0) (0,0,1,1) (0,0,0,0) (0,0,0,1) (0,0,0,2) (0,0,1,0) (0,0,1,1) N/A (0,0,0,0) (0,0,0,1) (1,0,0,0) (1,0,0,1) (2,0,0,0) (2,0,0,1) N/A (0,0,0,0) (1,0,0,0) (2,0,0,0) (3,0,0,0) (4,0,0,0) (5,0,0,0) N/A N/A N/A (0,1,0,1) (0,2,0,1) (0,1,0,0) (0,2,0,0) N/A N/A (0,0,0,0) (0,0,0,1) (0,0,0,2) (0,0,1,0) (0,0,1,1) (1,0,0,2) (0,0,0,0) (0,0,0,1) (0,0,0,2) (0,0,1,0) (0,0,1,1) (1,0,1,1) (0,1,0,1) (0,2,0,1) N/A (0,0,0,0) (0,0,1,0) (1,0,0,0) (1,0,1,0) N/A ETSI (0,1,0,2) (0,2,0,2) (0,1,0,1) (0,0,0,2) (0,0,0,1) (0,0,0,0) (0,0,0,1) (0,0,0,2) (0,0,0,0) (0,0,0,2) (0,0,0,0) (0,0,0,1) (0,0,0,0) (0,0,0,1) (0,0,0,2) N/A N/A N/A 3GPP TS 36.211 version 10.0.0 Release 10 22 / 32 23 / 33 24 / 34 25 / 35 26 / 36 27 / 37 28 / 38 29 /39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 (0,1,1,1) (0,0,0,1) (0,0,1,1) (0,0,0,1) (0,0,1,1) (0,0,0,1) (0,0,1,1) (1,0,0,1) (0,0,0,1) (0,0,1,1) (1,0,0,1) (1,0,1,1) (0,0,0,1) (0,0,1,1) (1,0,0,1) (1,0,1,1) (2,0,0,1) (0,0,0,1) (0,0,1,1) (1,0,0,1) (1,0,1,1) (2,0,0,1) (2,0,1,1) (0,1,0,0) (0,2,0,0) (0,1,1,0) (0,0,0,0) (0,0,1,0) (0,0,0,0) (0,0,1,0) (0,0,0,0) (0,0,1,0) (1,0,0,0) (0,0,0,0) (0,0,1,0) (1,0,0,0) (1,0,1,0) (0,1,0,*) (0,2,0,*) (0,1,1,*) (0,0,0,*) (0,0,1,*) (0,0,0,*) (0,0,1,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (2,0,0,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (2,0,0,*) (2,0,1,*) N/A N/A N/A N/A N/A 45 (0,1,1,0) (0,0,0,0) (0,0,1,0) (0,0,0,0) (0,0,1,0) (0,0,0,0) (0,0,1,0) (1,0,0,0) (0,0,0,0) (0,0,1,0) (1,0,0,0) (1,0,1,0) (0,0,0,0) (0,0,1,0) (1,0,0,0) (1,0,1,0) (2,0,0,0) (0,0,0,0) (0,0,1,0) (1,0,0,0) (1,0,1,0) (2,0,0,0) (2,0,1,0) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A (0,1,0,*) (0,2,0,*) (0,1,1,*) (0,0,0,*) (0,0,1,*) (0,0,0,*) (0,0,1,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (2,0,0,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (2,0,0,*) (2,0,1,*) N/A N/A N/A N/A N/A (0,1,0,*) (0,2,0,*) (0,1,1,*) (0,0,0,*) (0,0,1,*) (0,0,0,*) (0,0,1,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (2,0,0,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (2,0,0,*) (2,0,1,*) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A ETSI ETSI TS 136 211 V10.0.0 (2011-01) N/A (0,0,0,1) N/A (0,0,0,1) (1,0,0,1) (0,0,0,1) (1,0,0,1) (2,0,0,1) (0,0,0,1) (1,0,0,1) (2,0,0,1) (3,0,0,1) (0,0,0,1) (1,0,0,1) (2,0,0,1) (3,0,0,1) (4,0,0,1) (0,0,0,1) (1,0,0,1) (2,0,0,1) (3,0,0,1) (4,0,0,1) (5,0,0,1) (0,1,0,0) (0,2,0,0) N/A (0,0,0,0) N/A (0,0,0,0) (1,0,0,0) (0,0,0,0) (1,0,0,0) (2,0,0,0) (0,0,0,0) (1,0,0,0) (2,0,0,0) (3,0,0,0) (0,1,0,*) (0,2,0,*) N/A (0,0,0,*) N/A (0,0,0,*) (1,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (4,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (4,0,0,*) (5,0,0,*) N/A N/A N/A N/A N/A N/A (0,0,0,0) N/A (0,0,0,0) (1,0,0,0) (0,0,0,0) (1,0,0,0) (2,0,0,0) (0,0,0,0) (1,0,0,0) (2,0,0,0) (3,0,0,0) (0,0,0,0) (1,0,0,0) (2,0,0,0) (3,0,0,0) (4,0,0,0) (0,0,0,0) (1,0,0,0) (2,0,0,0) (3,0,0,0) (4,0,0,0) (5,0,0,0) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A (0,1,0,*) (0,2,0,*) N/A (0,0,0,*) N/A (0,0,0,*) (1,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (4,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (4,0,0,*) (5,0,0,*) N/A N/A N/A N/A N/A (0,1,0,*) (0,2,0,*) N/A (0,0,0,*) N/A (0,0,0,*) (1,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (4,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (4,0,0,*) (5,0,0,*) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A (0,1,1,0) (0,0,0,1) (0,0,1,0) (0,0,0,1) (0,0,1,0) (0,0,0,1) (0,0,1,0) (1,0,0,1) (0,0,0,1) (0,0,1,0) (1,0,0,1) (1,0,1,0) (0,0,0,1) (0,0,1,0) (1,0,0,1) (1,0,1,0) (2,0,0,1) (0,0,0,1) (0,0,1,0) (1,0,0,1) (1,0,1,0) (2,0,0,1) (2,0,1,0) (0,1,0,0) (0,2,0,0) N/A (0,0,0,0) N/A (0,0,0,0) (1,0,0,0) (0,0,0,0) (1,0,0,0) (2,0,0,0) (0,0,0,0) (1,0,0,0) (2,0,0,0) (3,0,0,0) (0,1,0,*) (0,2,0,*) (0,1,1,*) (0,0,0,*) (0,0,1,*) (0,0,0,*) (0,0,1,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (2,0,0,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (2,0,0,*) (2,0,1,*) N/A N/A N/A N/A N/A 3GPP TS 36.211 version 10.0.0 Release 10 63 N/A 46 N/A ETSI TS 136 211 V10.0.0 (2011-01) N/A N/A N/A N/A N/A * UpPTS 5.7.2 Preamble sequence generation The random access preambles are generated from Zadoff-Chu sequences with zero correlation zone, generated from one or several root Zadoff-Chu sequences. The network configures the set of preamble sequences the UE is allowed to use. There are 64 preambles available in each cell. The set of 64 preamble sequences in a cell is found by including first, in the order of increasing cyclic shift, all the available cyclic shifts of a root Zadoff-Chu sequence with the logical index RACH_ROOT_SEQUENCE, where RACH_ROOT_SEQUENCE is broadcasted as part of the System Information. Additional preamble sequences, in case 64 preambles cannot be generated from a single root Zadoff-Chu sequence, are obtained from the root sequences with the consecutive logical indexes until all the 64 sequences are found. The logical root sequence order is cyclic: the logical index 0 is consecutive to 837. The relation between a logical root sequence index and physical root sequence index u is given by Tables 5.7.2-4 and 5.7.2-5 for preamble formats 0 – 3 and 4, respectively. The u th root Zadoff-Chu sequence is defined by xu (n ) = e −j πun ( n +1) N ZC , 0 ≤ n ≤ N ZC − 1 where the length N ZC of the Zadoff-Chu sequence is given by Table 5.7.2-1. From the u th root Zadoff-Chu sequence, random access preambles with zero correlation zones of length N CS − 1 are defined by cyclic shifts according to xu ,v (n) = xu ((n + Cv ) mod N ZC ) where the cyclic shift is given by v = 0,1,..., N ZC N CS − 1, N CS ≠ 0 for unrestricted sets dstart v n ⎦ ⎥ RA shift + (v mod n RA shift ) N CS ⎣ ⎢ N CS = 0 ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ Cv = 0 ⎦ ⎥ vN CS v = 0,1,..., n RA RA shift group n for unrestricted sets +n RA shift −1 for restricted sets ⎣ ⎢ and N CS is given by Tables 5.7.2-2 and 5.7.2-3 for preamble formats 0-3 and 4, respectively, where the parameter zeroCorrelationZoneConfig is provided by higher layers. The parameter High-speed-flag provided by higher layers determines if unrestricted set or restricted set shall be used. The variable d u is the cyclic shift corresponding to a Doppler shift of magnitude 1 TSEQ and is given by ⎩ ⎨ ⎧ du = p 0 ≤ p < N ZC 2 N ZC − p otherwise where p is the smallest non-negative integer that fulfils ( pu ) mod N ZC = 1 . The parameters for restricted sets of cyclic shifts depend on d u . For N CS ≤ d u < N ZC 3 , the parameters are given by RA nshift = ⎣d u N CS ⎦ RA d start = 2d u + nshift N CS RA ngroup = ⎣N ZC d start ⎦ (⎣ ⎦) RA RA nshift = max ( N ZC − 2d u − ngroup d start ) N CS ,0 For N ZC 3 ≤ d u ≤ ( N ZC − N CS ) 2 , the parameters are given by ETSI 3GPP TS 36.211 version 10.0.0 Release 10 47 ETSI TS 136 211 V10.0.0 (2011-01) RA nshift = ⎣( N ZC − 2d u ) N CS ⎦ RA d start = N ZC − 2d u + nshift N CS RA ngroup = ⎣d u d start ⎦ ( (⎣ ⎦) RA RA RA nshift = min max (d u − ngroup d start ) N CS ,0 , nshift ) For all other values of d u , there are no cyclic shifts in the restricted set. Table 5.7.2-1: Random access preamble sequence length. Preamble format N ZC 0–3 4 839 139 Table 5.7.2-2: N CS for preamble generation (preamble formats 0-3). zeroCorrelationZoneConfig 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 N CS value Unrestricted set 0 13 15 18 22 26 32 38 46 59 76 93 119 167 279 419 Restricted set 15 18 22 26 32 38 46 55 68 82 100 128 158 202 237 - Table 5.7.2-3: N CS for preamble generation (preamble format 4). zeroCorrelationZoneConfig 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ETSI N CS value 2 4 6 8 10 12 15 N/A N/A N/A N/A N/A N/A N/A N/A N/A 3GPP TS 36.211 version 10.0.0 Release 10 48 ETSI TS 136 211 V10.0.0 (2011-01) Table 5.7.2-4: Root Zadoff-Chu sequence order for preamble formats 0 – 3. Logical root sequence number 0–23 24–29 30–35 36–41 42–51 52–63 64–75 76–89 90–115 116–135 136–167 168–203 204–263 264–327 328–383 384–455 456–513 514–561 562–629 630–659 660–707 708–729 730–751 752–765 766–777 778–789 790–795 796–803 804–809 810–815 816–819 820–837 Physical root sequence number u (in increasing order of the corresponding logical sequence number) 129, 710, 140, 699, 120, 719, 210, 629, 168, 671, 84, 755, 105, 734, 93, 746, 70, 769, 60, 779 2, 837, 1, 838 56, 783, 112, 727, 148, 691 80, 759, 42, 797, 40, 799 35, 804, 73, 766, 146, 693 31, 808, 28, 811, 30, 809, 27, 812, 29, 810 24, 815, 48, 791, 68, 771, 74, 765, 178, 661, 136, 703 86, 753, 78, 761, 43, 796, 39, 800, 20, 819, 21, 818 95, 744, 202, 637, 190, 649, 181, 658, 137, 702, 125, 714, 151, 688 217, 622, 128, 711, 142, 697, 122, 717, 203, 636, 118, 721, 110, 729, 89, 750, 103, 736, 61, 778, 55, 784, 15, 824, 14, 825 12, 827, 23, 816, 34, 805, 37, 802, 46, 793, 207, 632, 179, 660, 145, 694, 130, 709, 223, 616 228, 611, 227, 612, 132, 707, 133, 706, 143, 696, 135, 704, 161, 678, 201, 638, 173, 666, 106, 733, 83, 756, 91, 748, 66, 773, 53, 786, 10, 829, 9, 830 7, 832, 8, 831, 16, 823, 47, 792, 64, 775, 57, 782, 104, 735, 101, 738, 108, 731, 208, 631, 184, 655, 197, 642, 191, 648, 121, 718, 141, 698, 149, 690, 216, 623, 218, 621 152, 687, 144, 695, 134, 705, 138, 701, 199, 640, 162, 677, 176, 663, 119, 720, 158, 681, 164, 675, 174, 665, 171, 668, 170, 669, 87, 752, 169, 670, 88, 751, 107, 732, 81, 758, 82, 757, 100, 739, 98, 741, 71, 768, 59, 780, 65, 774, 50, 789, 49, 790, 26, 813, 17, 822, 13, 826, 6, 833 5, 834, 33, 806, 51, 788, 75, 764, 99, 740, 96, 743, 97, 742, 166, 673, 172, 667, 175, 664, 187, 652, 163, 676, 185, 654, 200, 639, 114, 725, 189, 650, 115, 724, 194, 645, 195, 644, 192, 647, 182, 657, 157, 682, 156, 683, 211, 628, 154, 685, 123, 716, 139, 700, 212, 627, 153, 686, 213, 626, 215, 624, 150, 689 225, 614, 224, 615, 221, 618, 220, 619, 127, 712, 147, 692, 124, 715, 193, 646, 205, 634, 206, 633, 116, 723, 160, 679, 186, 653, 167, 672, 79, 760, 85, 754, 77, 762, 92, 747, 58, 781, 62, 777, 69, 770, 54, 785, 36, 803, 32, 807, 25, 814, 18, 821, 11, 828, 4, 835 3, 836, 19, 820, 22, 817, 41, 798, 38, 801, 44, 795, 52, 787, 45, 794, 63, 776, 67, 772, 72 767, 76, 763, 94, 745, 102, 737, 90, 749, 109, 730, 165, 674, 111, 728, 209, 630, 204, 635, 117, 722, 188, 651, 159, 680, 198, 641, 113, 726, 183, 656, 180, 659, 177, 662, 196, 643, 155, 684, 214, 625, 126, 713, 131, 708, 219, 620, 222, 617, 226, 613 230, 609, 232, 607, 262, 577, 252, 587, 418, 421, 416, 423, 413, 426, 411, 428, 376, 463, 395, 444, 283, 556, 285, 554, 379, 460, 390, 449, 363, 476, 384, 455, 388, 451, 386, 453, 361, 478, 387, 452, 360, 479, 310, 529, 354, 485, 328, 511, 315, 524, 337, 502, 349, 490, 335, 504, 324, 515 323, 516, 320, 519, 334, 505, 359, 480, 295, 544, 385, 454, 292, 547, 291, 548, 381, 458, 399, 440, 380, 459, 397, 442, 369, 470, 377, 462, 410, 429, 407, 432, 281, 558, 414, 425, 247, 592, 277, 562, 271, 568, 272, 567, 264, 575, 259, 580 237, 602, 239, 600, 244, 595, 243, 596, 275, 564, 278, 561, 250, 589, 246, 593, 417, 422, 248, 591, 394, 445, 393, 446, 370, 469, 365, 474, 300, 539, 299, 540, 364, 475, 362, 477, 298, 541, 312, 527, 313, 526, 314, 525, 353, 486, 352, 487, 343, 496, 327, 512, 350, 489, 326, 513, 319, 520, 332, 507, 333, 506, 348, 491, 347, 492, 322, 517 330, 509, 338, 501, 341, 498, 340, 499, 342, 497, 301, 538, 366, 473, 401, 438, 371, 468, 408, 431, 375, 464, 249, 590, 269, 570, 238, 601, 234, 605 257, 582, 273, 566, 255, 584, 254, 585, 245, 594, 251, 588, 412, 427, 372, 467, 282, 557, 403, 436, 396, 443, 392, 447, 391, 448, 382, 457, 389, 450, 294, 545, 297, 542, 311, 528, 344, 495, 345, 494, 318, 521, 331, 508, 325, 514, 321, 518 346, 493, 339, 500, 351, 488, 306, 533, 289, 550, 400, 439, 378, 461, 374, 465, 415, 424, 270, 569, 241, 598 231, 608, 260, 579, 268, 571, 276, 563, 409, 430, 398, 441, 290, 549, 304, 535, 308, 531, 358, 481, 316, 523 293, 546, 288, 551, 284, 555, 368, 471, 253, 586, 256, 583, 263, 576 242, 597, 274, 565, 402, 437, 383, 456, 357, 482, 329, 510 317, 522, 307, 532, 286, 553, 287, 552, 266, 573, 261, 578 236, 603, 303, 536, 356, 483 355, 484, 405, 434, 404, 435, 406, 433 235, 604, 267, 572, 302, 537 309, 530, 265, 574, 233, 606 367, 472, 296, 543 336, 503, 305, 534, 373, 466, 280, 559, 279, 560, 419, 420, 240, 599, 258, 581, 229, 610 ETSI 3GPP TS 36.211 version 10.0.0 Release 10 49 ETSI TS 136 211 V10.0.0 (2011-01) Table 5.7.2-5: Root Zadoff-Chu sequence order for preamble format 4. Logical root sequence number 0 – 19 20 – 39 40 – 59 60 – 79 80 – 99 100 – 119 120 – 137 138 – 837 5.7.3 Physical root sequence number u (in increasing order of the corresponding logical sequence number) 1 11 21 31 41 51 61 138 128 118 108 98 88 78 2 12 22 32 42 52 62 137 127 117 107 97 87 77 3 13 23 33 43 53 63 136 126 116 106 96 86 76 4 14 24 34 44 54 64 135 125 115 105 95 85 75 5 15 25 35 45 55 65 134 6 124 16 114 26 104 36 94 46 84 56 74 66 N/A 133 123 113 103 93 83 73 7 17 27 37 47 57 67 132 122 112 102 92 82 72 8 18 28 38 48 58 68 131 121 111 101 91 81 71 9 19 29 39 49 59 69 130 120 110 100 90 80 70 10 129 20 119 30 109 40 99 50 89 60 79 - Baseband signal generation The time-continuous random access signal s (t ) is defined by s (t ) = β PRACH N ZC −1 N ZC −1 ∑ ∑x k =0 u , v ( n) ⋅ e −j 2πnk N ZC 1 ⋅ e j 2π (k +ϕ + K (k0 + 2 ))Δf RA (t −TCP ) n=0 where 0 ≤ t < TSEQ + TCP , β PRACH is an amplitude scaling factor in order to conform to the transmit power PPRACH RA RB UL RB specified in Section 6.1 in [4], and k 0 = nPRB N sc − N RB N sc 2 . The location in the frequency domain is controlled by RA the parameter nPRB is derived from section 5.7.1. The factor K = Δf Δf RA accounts for the difference in subcarrier spacing between the random access preamble and uplink data transmission. The variable Δf RA , the subcarrier spacing for the random access preamble, and the variable ϕ , a fixed offset determining the frequency-domain location of the random access preamble within the physical resource blocks, are both given by Table 5.7.3-1. Table 5.7.3-1: Random access baseband parameters. Preamble format ϕ 0–3 4 5.8 Δf RA 1250 Hz 7500 Hz 7 2 Modulation and upconversion Modulation and upconversion to the carrier frequency of the complex-valued SC-FDMA baseband signal for each antenna port is shown in Figure 5.8-1. The filtering required prior to transmission is defined by the requirements in [7]. ETSI 3GPP TS 36.211 version 10.0.0 Release 10 50 ETSI TS 136 211 V10.0.0 (2011-01) cos (2πf 0 t ) Re {sl (t )} s l (t ) Im{sl (t )} − sin (2πf 0 t ) Figure 5.8-1: Uplink modulation. 6 Downlink 6.1 Overview The smallest time-frequency unit for downlink transmission is denoted a resource element and is defined in Section 6.2.2. A subset of the downlink subframes in a radio frame on a carrier supporting PDSCH transmission can be configured as MBSFN subframes by higher layers. Each MBSFN subframe is divided into a non-MBSFN region and an MBSFN region. - The non-MBSFN region spans the first one or two OFDM symbols in an MBSFN subframe where the length of the non-MBSFN region is given by Table 6.7-1. Transmission in the non-MBSFN region shall use the same cyclic prefix length as used for subframe 0. - The MBSFN region in an MBSFN subframe is defined as the OFDM symbols not used for the non-MBSFN region. 6.1.1 Physical channels A downlink physical channel corresponds to a set of resource elements carrying information originating from higher layers and is the interface defined between 36.212 and 36.211. The following downlink physical channels are defined: - Physical Downlink Shared Channel, PDSCH - Physical Broadcast Channel, PBCH - Physical Multicast Channel, PMCH - Physical Control Format Indicator Channel, PCFICH - Physical Downlink Control Channel, PDCCH - Physical Hybrid ARQ Indicator Channel, PHICH 6.1.2 Physical signals A downlink physical signal corresponds to a set of resource elements used by the physical layer but does not carry information originating from higher layers. The following downlink physical signals are defined: ETSI 3GPP TS 36.211 version 10.0.0 Release 10 - ETSI TS 136 211 V10.0.0 (2011-01) Reference signal - 51 Synchronization signal 6.2 Slot structure and physical resource elements 6.2.1 Resource grid DL R DL The transmitted signal in each slot is described by one or several resource grids of N RB N scB subcarriers and N symb DL OFDM symbols. The resource grid structure is illustrated in Figure 6.2.2-1. The quantity N RB depends on the downlink transmission bandwidth configured in the cell and shall fulfil min, DL max, N RB DL ≤ N RB ≤ N RB DL min, max, where N RB DL = 6 and N RB DL = 110 are the smallest and largest downlink bandwidths, respectively, supported by the current version of this specification. DL The set of allowed values for N RB is given by [6]. The number of OFDM symbols in a slot depends on the cyclic prefix length and subcarrier spacing configured and is given in Table 6.2.3-1. An antenna port is defined such that the channel over which a symbol on the antenna port is conveyed can be inferred from the channel over which another symbol on the same antenna port is conveyed. There is one resource grid per antenna port. The set of antenna ports supported depends on the reference signal configuration in the cell: - Cell-specific reference signals support a configuration of one, two, or four antenna ports and are transmitted on antenna ports p = 0 , p ∈ {0,1} , and p ∈ {0,1,2,3} , respectively. - MBSFN reference signals are transmitted on antenna port p = 4 . - UE-specific reference signals are transmitted on antenna port(s) p = 5 , p = 7 , p = 8 , or one or several of p ∈ {7,8,9,10,11,12,13,14} .. - Positioning reference signals are transmitted on antenna port p = 6 . - CSI reference signals support a configuration of one, two, four or eight antenna ports and are transmitted on antenna ports p = 15 , p = 15,16 , p = 15,...,18 and p = 15,...,22 , respectively.. 6.2.2 Resource elements Each element in the resource grid for antenna port p is called a resource element and is uniquely identified by the DL DL RB index pair (k , l ) in a slot where k = 0,..., N RB N sc − 1 and l = 0,..., N symb − 1 are the indices in the frequency and time ( domains, respectively. Resource element (k , l ) on antenna port p corresponds to the complex value a k ,pl ) . When there is no risk for confusion, or no particular antenna port is specified, the index p may be dropped. ETSI 3GPP TS 36.211 version 10.0.0 Release 10 52 ETSI TS 136 211 V10.0.0 (2011-01) Tslot DL N symb DL RB k = N RB N sc − 1 (k , l ) RB N sc DL RB N RB × N sc DL RB N symb × N sc k =0 l=0 l= DL N symb −1 Figure 6.2.2-1: Downlink resource grid. 6.2.3 Resource blocks Resource blocks are used to describe the mapping of certain physical channels to resource elements. Physical and virtual resource blocks are defined. DL R A physical resource block is defined as N symb consecutive OFDM symbols in the time domain and N scB consecutive DL R subcarriers in the frequency domain, where N symb and N scB are given by Table 6.2.3-1. A physical resource block thus DL R consists of N symb × N scB resource elements, corresponding to one slot in the time domain and 180 kHz in the frequency domain. DL Physical resource blocks are numbered from 0 to N RB − 1 in the frequency domain. The relation between the physical resource block number nPRB in the frequency domain and resource elements (k , l ) in a slot is given by k RB N sc ⎣ ⎢ ⎢ ⎢ ETSI ⎦ ⎥ ⎥ ⎥ nPRB = 3GPP TS 36.211 version 10.0.0 Release 10 53 ETSI TS 136 211 V10.0.0 (2011-01) Table 6.2.3-1: Physical resource blocks parameters. Δf = 15 kHz Normal cyclic prefix Δf = 15 kHz 7 12 Δf = 7.5 kHz Extended cyclic prefix DL N symb R N scB Configuration 24 6 3 A virtual resource block is of the same size as a physical resource block. Two types of virtual resource blocks are defined: - Virtual resource blocks of localized type - Virtual resource blocks of distributed type For each type of virtual resource blocks, a pair of virtual resource blocks over two slots in a subframe is assigned together by a single virtual resource block number, nVRB . 6.2.3.1 Virtual resource blocks of localized type Virtual resource blocks of localized type are mapped directly to physical resource blocks such that virtual resource block nVRB corresponds to physical resource block nPRB = nVRB . Virtual resource blocks are numbered from 0 DL DL DL to N VRB − 1 , where N VRB = N RB . 6.2.3.2 Virtual resource blocks of distributed type Virtual resource blocks of distributed type are mapped to physical resource blocks as described below. Table 6.2.3.2-1: RB gap values. a) Gap ( N gap ) a) System BW DL ( N RB ) 6-10 11 12-19 20-26 27-44 45-49 50-63 64-79 80-110 b) 1st Gap ( N gap,1 ) DL ⎡N RB / 2⎤ 4 8 12 18 27 27 32 48 a) 2nd Gap ( N gap,2 ) N/A N/A N/A N/A N/A N/A 9 16 16 DL The parameter N gap is given by Table 6.2.3.2-1. For 6 ≤ N RB ≤ 49 , only one gap value N gap,1 is defined and DL N gap = N gap,1 . For 50 ≤ N RB ≤ 110 , two gap values N gap,1 and N gap,2 are defined. Whether N gap = N gap,1 or N gap = N gap,2 is signaled as part of the downlink scheduling assignment as described in [3]. DL Virtual resource blocks of distributed type are numbered from 0 to N VRB − 1 , where DL DL DL DL DL DL N VRB = N VRB,gap1 = 2 ⋅ min( N gap , N RB − N gap ) for N gap = N gap,1 and N VRB = N VRB,gap2 = ⎣N RB / 2 N gap ⎦ ⋅ 2 N gap for N gap = N gap,2 . ETSI 3GPP TS 36.211 version 10.0.0 Release 10 54 ETSI TS 136 211 V10.0.0 (2011-01) ~ ~ DL DL DL Consecutive N VRB VRB numbers compose a unit of VRB number interleaving, where N VRB = N VRB for N gap = N gap,1 ~ DL and N VRB = 2 N gap for N gap = N gap,2 . Interleaving of VRB numbers of each interleaving unit is performed with 4 DL columns and N row rows, where N row = ⎡N VRB /( 4 P )⎤⋅ P , and P is RBG size as described in [4]. VRB numbers are ~ written row by row in the rectangular matrix, and read out column by column. N null nulls are inserted in the last ~ DL N null / 2 rows of the 2nd and 4th column, where N null = 4 N row − N VRB . Nulls are ignored when reading out. The VRB numbers mapping to PRB numbers including interleaving is derived as follows: For even slot number ns ; ~′ nPRB − N row ~′ nPRB − N row + N null / 2 ~ nPRB (ns ) = ~ ′′ nPRB − N null / 2 ~ ′′ n ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ ~ where nVRB PRB ~ DL ~ , N null ≠ 0 and nVRB ≥ N VRB − N null ~ DL ~ , N null ≠ 0 and nVRB ≥ N VRB − N null ~ ~ ≠ 0 and n < N DL − N ,N null VRB VRB null ~ and nVRB mod 2 = 1 ~ and n mod 2 = 0 VRB ~ and nVRB mod 4 ≥ 2 , , otherwise ⎣ ⎦ ~ DL ~ DL ~′ ~ ~ where nPRB = 2 N row ⋅ (nVRB mod 2) + ⎣nVRB / 2⎦ + N VRB ⋅ nVRB / N VRB , ~ DL ~ DL ~ ′′ ~ ~ and nPRB = N row ⋅ (nVRB mod 4) + ⎣nVRB / 4⎦ + N VRB ⋅ nVRB / N VRB , ~ DL = nVRB mod N VRB and nVRB is obtained from the downlink scheduling assignment as described in [4]. ⎣ ⎦ For odd slot number ns ; ( ) ⎣ ~ DL ~ DL ~ DL ~ DL ~ ~ nPRB (ns ) = nPRB (ns − 1) + N VRB / 2 mod N VRB + N VRB ⋅ nVRB / N VRB ⎦ Then, for all ns ; ~ n (n ), nPRB (ns ) = ~PRB s ~ DL nPRB (ns ) + N gap − N VRB / 2, ⎩ ⎪ ⎨ ⎪ ⎧ 6.2.4 ~ nPRB (ns ) < ~ (n ) ≥ nPRB s ~ DL N VRB / 2 . ~ DL N VRB / 2 Resource-element groups Resource-element groups are used for defining the mapping of control channels to resource elements. A resource-element group is represented by the index pair (k ′, l ′) of the resource element with the lowest index k in the group with all resource elements in the group having the same value of l . The set of resource elements (k , l ) in a resource-element group depends on the number of cell-specific reference signals configured as described below with R DL k 0 = nPRB ⋅ N scB , 0 ≤ nPRB < N RB . - In the first OFDM symbol of the first slot in a subframe the two resource-element groups in physical resource block nPRB consist of resource elements (k , l = 0) with k = k 0 + 0, k 0 + 1,..., k 0 + 5 and k = k 0 + 6, k 0 + 7,..., k 0 + 11 , respectively. - In the second OFDM symbol of the first slot in a subframe in case of one or two cell-specific reference signals configured, the three resource-element groups in physical resource block nPRB consist of resource elements (k , l = 1) with k = k 0 + 0, k 0 + 1,..., k 0 + 3 , k = k 0 + 4, k 0 + 5,..., k 0 + 7 and k = k 0 + 8, k 0 + 9,..., k 0 + 11 , respectively. - In the second OFDM symbol of the first slot in a subframe in case of four cell-specific reference signals configured, the two resource-element groups in physical resource block nPRB consist of resource elements (k , l = 1) with k = k 0 + 0, k 0 + 1,..., k 0 + 5 and k = k 0 + 6, k 0 + 7,..., k 0 + 11 , respectively. ETSI 3GPP TS 36.211 version 10.0.0 Release 10 55 ETSI TS 136 211 V10.0.0 (2011-01) - In the third OFDM symbol of the first slot in a subframe, the three resource-element groups in physical resource block nPRB consist of resource elements (k , l = 2) with k = k 0 + 0, k 0 + 1,..., k 0 + 3 , k = k 0 + 4, k 0 + 5,..., k 0 + 7 and k = k 0 + 8, k 0 + 9,..., k 0 + 11 , respectively. - In the fourth OFDM symbol of the first slot in a subframe in case of normal cyclic prefix, the three resourceelement groups in physical resource block nPRB consist of resource elements (k , l = 3) with k = k 0 + 0, k 0 + 1,..., k 0 + 3 , k = k 0 + 4, k 0 + 5,..., k 0 + 7 and k = k 0 + 8, k 0 + 9,..., k 0 + 11 , respectively. - In the fourth OFDM symbol of the first slot in a subframe in case of extended cyclic prefix, the two resourceelement groups in physical resource block nPRB consist of resource elements (k , l = 3) with k = k 0 + 0, k 0 + 1,..., k 0 + 5 and k = k 0 + 6, k 0 + 7,..., k 0 + 11 , respectively. Mapping of a symbol-quadruplet z (i ), z (i + 1), z (i + 2), z (i + 3) onto a resource-element group represented by resourceelement (k ′, l ′) is defined such that elements z (i ) are mapped to resource elements (k , l ) of the resource-element group not used for cell-specific reference signals in increasing order of i and k . In case a single cell-specific reference signal is configured, cell-specific reference signals shall be assumed to be present on antenna ports 0 and 1 for the purpose of mapping a symbol-quadruplet to a resource-element group, otherwise the number of cell-specific reference signals shall be assumed equal to the actual number of antenna ports used for cell-specific reference signals. The UE shall not make any assumptions about resource elements assumed to be reserved for reference signals but not used for transmission of a reference signal. 6.2.5 Guard period for half-duplex FDD operation For half-duplex FDD operation, a guard period is created by the UE by not receiving the last part of a downlink subframe immediately preceding an uplink subframe from the same UE. 6.2.6 Guard Period for TDD Operation For frame structure type 2, the GP field in Figure 4.2-1 serves as a guard period. 6.3 General structure for downlink physical channels This section describes a general structure, applicable to more than one physical channel. The baseband signal representing a downlink physical channel is defined in terms of the following steps: - scrambling of coded bits in each of the codewords to be transmitted on a physical channel - modulation of scrambled bits to generate complex-valued modulation symbols - mapping of the complex-valued modulation symbols onto one or several transmission layers - precoding of the complex-valued modulation symbols on each layer for transmission on the antenna ports - mapping of complex-valued modulation symbols for each antenna port to resource elements - generation of complex-valued time-domain OFDM signal for each antenna port ETSI 3GPP TS 36.211 version 10.0.0 Release 10 56 ETSI TS 136 211 V10.0.0 (2011-01) Figure 6.3-1: Overview of physical channel processing. 6.3.1 Scrambling (q (q For each codeword q , the block of bits b ( q ) (0),..., b ( q ) ( M bit) − 1) , where M bit) is the number of bits in codeword q transmitted on the physical channel in one subframe, shall be scrambled prior to modulation, resulting in a block of ~ ~ (q) scrambled bits b ( q ) (0),..., b ( q ) ( M bit − 1) according to ( ) ~ b ( q ) (i ) = b ( q ) (i ) + c ( q ) (i ) mod 2 where the scrambling sequence c ( q ) (i ) is given by Section 7.2. The scrambling sequence generator shall be initialised at the start of each subframe, where the initialisation value of cinit depends on the transport channel type according to ⎩ ⎪ ⎨ ⎪ ⎧ cinit = cell nRNTI ⋅ 214 + q ⋅ 213 + ⎣ns 2⎦ ⋅ 29 + N ID ⎣ns 2⎦ ⋅ 2 + 9 MBSFN N ID for PDSCH for PMCH where nRNTI corresponds to the RNTI associated with the PDSCH transmission as described in Section 7.1[4]. Up to two codewords can be transmitted in one subframe, i.e., q ∈ {0,1} . In the case of single codeword transmission, q is equal to zero. 6.3.2 Modulation ~ ~ (q) For each codeword q , the block of scrambled bits b ( q ) (0),..., b ( q ) ( M bit − 1) shall be modulated as described in Section 7.1 using one of the modulation schemes in Table 6.3.2-1, resulting in a block of complex-valued modulation (q) symbols d ( q ) (0),..., d ( q ) ( M symb − 1) . Table 6.3.2-1: Modulation schemes. Physical channel PDSCH PMCH 6.3.3 Modulation schemes QPSK, 16QAM, 64QAM QPSK, 16QAM, 64QAM Layer mapping The complex-valued modulation symbols for each of the codewords to be transmitted are mapped onto one or several (q) layers. Complex-valued modulation symbols d ( q ) (0),..., d ( q ) ( M symb − 1) for codeword q shall be mapped onto the [ T layer layer layers x(i ) = x (0) (i ) ... x (υ −1) (i ) , i = 0,1,..., M symb − 1 where υ is the number of layers and M symb is the number of modulation symbols per layer. 6.3.3.1 Layer mapping for transmission on a single antenna port For transmission on a single antenna port, a single layer is used, υ = 1 , and the mapping is defined by ETSI 3GPP TS 36.211 version 10.0.0 Release 10 57 ETSI TS 136 211 V10.0.0 (2011-01) x ( 0) (i ) = d ( 0) (i ) layer (0) with M symb = M symb . 6.3.3.2 Layer mapping for spatial multiplexing For spatial multiplexing, the layer mapping shall be done according to Table 6.3.3.2-1. The number of layers υ is less than or equal to the number of antenna ports P used for transmission of the physical channel. The case of a single codeword mapped to multiple layers is only applicable when the number of cell-specific reference signals is four or when the number of UE-specific reference signals is two or larger. Table 6.3.3.2-1: Codeword-to-layer mapping for spatial multiplexing. Number of layers Number of codewords Codeword-to-layer mapping layer i = 0,1,..., M symb − 1 1 1 x ( 0) (i ) = d ( 0) (i ) layer ( 0) M symb = M symb 2 1 x ( 0) (i ) = d ( 0) (2i ) x (1) (i ) = d ( 0) (2i + 1) layer (0) M symb = M symb 2 2 2 x ( 0) (i ) = d ( 0) (i ) x (i ) = d (1) x (0) (i ) 1 ETSI layer ( 0) (1) M symb = M symb = M symb (i ) = d (0) (3i ) x (i ) = d (0) (3i + 1 x ( 2) (i ) = d (0) (3i + 2 (1) 3 (1) layer (0) M symb = M symb 3 3GPP TS 36.211 version 10.0.0 Release 10 58 ETSI TS 136 211 V10.0.0 (2011-01) x ( 0) (i ) = d ( 0) (i ) 3 x (1) (i ) = d (1) (2i ) 2 layer ( 0) (1) M symb = M symb = M symb 2 x ( 2) (i ) = d (1) (2i + 1) x (0) (i ) = d (0) (4i ) 4 4 1 2 x (1) (i ) = d (0) (4i + 1) x ( 2) (i ) = d (0) (4i + 2) x (3) (i ) = d (0) (4i + 3) x ( 0) (i ) = d ( 0) (2i ) x (1) (i ) = d ( 0) (2i + 1) x ( 2) (i ) = d (1) (2i ) layer (0) M symb = M symb 4 layer ( 0) (1) M symb = M symb 2 = M symb 2 x (3) (i ) = d (1) (2i + 1) 5 2 x ( 0) (i ) = d ( 0) (2i ) x (1) (i ) = d ( 0) (2i + 1) layer ( 0) (1) M symb = M symb 2 = M symb 3 x ( 2) (i ) = d (1) (3i ) x (3) (i ) = d (1) (3i + 1) x ( 4) (i ) = d (1) (3i + 2) 6 2 x (0) (i ) = d (0) (3i ) x (i ) = d (3i + 1) x ( 2) (i ) = d (0) (3i + 2) (1) layer ( 0) (1) M symb = M symb 3 = M symb 3 (0) x (3) (i ) = d (1) (3i ) x ( 4) (i ) = d (1) (3i + 1) x (5) (i ) = d (1) (3i + 2) 7 2 x (0) (i ) = d (0) (3i ) x (i ) = d (3i + 1) x ( 2) (i ) = d (0) (3i + 2) (1) layer ( 0) (1) M symb = M symb 3 = M symb 4 (0) x (3) (i ) = d (1) (4i ) x ( 4) (i ) = d (1) (4i + 1) x (5) (i ) = d (1) (4i + 2) x (6) (i ) = d (1) (4i + 3) 8 2 x (0) (i ) = d (0) (4i ) x (i ) = d (1) (0) layer ( 0) (1) M symb = M symb 4 = M symb 4 (4i + 1) x (i ) = d (4i + 2) x (3) (i ) = d (0) (4i + 3) ( 2) (0) x ( 4) (i ) = d (1) (4i ) x (5) (i ) = d (1) (4i + 1) x (6) (i ) = d (1) (4i + 2) x (7 ) (i ) = d (1) (4i + 3) 6.3.3.3 Layer mapping for transmit diversity For transmit diversity, the layer mapping shall be done according to Table 6.3.3.3-1. There is only one codeword and the number of layers υ is equal to the number of antenna ports P used for transmission of the physical channel. ETSI 3GPP TS 36.211 version 10.0.0 Release 10 59 ETSI TS 136 211 V10.0.0 (2011-01) Table 6.3.3.3-1: Codeword-to-layer mapping for transmit diversity. Number of codewords Codeword-to-layer mapping layer i = 0,1,..., M symb − 1 x ( 0) (i ) = d ( 0) (2i ) 2 1 layer (0) M symb = M symb 2 x (1) (i ) = d ( 0) (2i + 1) x ( 0) (i ) = d ( 0) (4i ) layer M symb = x (1) (i ) = d ( 0) (4i + 1) 4 1 x ( 2) (i ) = d ( 0) (4i + 2) x 6.3.4 (3) (i ) = d ( 0) ⎩ ⎪ ⎨ ⎪ ⎧ Number of layers (M (0) M symb 4 (0) symb ) +2 4 (0) if M symb mod 4 = 0 (0) if M symb mod 4 ≠ 0 If M symb mod 4 ≠ 0 two null symbols shall be ( 0) (4i + 3) appended to d ( 0) (0) ( M symb − 1) Precoding [ T layer The precoder takes as input a block of vectors x(i ) = x (0) (i ) ... x (υ −1) (i ) , i = 0,1,..., M symb − 1 from the layer [ T ap mapping and generates a block of vectors y (i ) = ... y ( p ) (i ) ... , i = 0,1,..., M symb − 1 to be mapped onto resources on each of the antenna ports, where y ( p ) (i ) represents the signal for antenna port p . 6.3.4.1 Precoding for transmission on a single antenna port For transmission on a single antenna port, precoding is defined by y ( p ) (i ) = x ( 0) (i ) where p ∈ {0,4,5,7,8} is the number of the single antenna port used for transmission of the physical channel and ap ap layer i = 0,1,..., M symb − 1 , M symb = M symb . 6.3.4.2 Precoding for spatial multiplexing using antenna ports with cell-specific reference signals Precoding for spatial multiplexing using antenna ports with cell-specific reference signals is only used in combination with layer mapping for spatial multiplexing as described in Section 6.3.3.2. Spatial multiplexing supports two or four antenna ports and the set of antenna ports used is p ∈ {0,1} or p ∈ {0,1,2,3} , respectively. 6.3.4.2.1 Precoding without CDD Without cyclic delay diversity (CDD), precoding for spatial multiplexing is defined by M ⎦ ⎥ ⎥ ⎥ ⎤ M (i ) = W (i ) ⎣ ⎢ ⎢ ⎢ ⎡ y ( P −1) x ( 0 ) (i ) x (υ −1) (i ) ⎦ ⎥ ⎥ ⎥ ⎤ y ( 0 ) (i ) ⎣ ⎢ ⎢ ⎢ ⎡ ap ap layer where the precoding matrix W (i) is of size P ×υ and i = 0,1,..., M symb − 1 , M symb = M symb . For spatial multiplexing, the values of W (i ) shall be selected among the precoder elements in the codebook configured in the eNodeB and the UE. The eNodeB can further confine the precoder selection in the UE to a subset of the elements in the codebook using codebook subset restrictions. The configured codebook shall be selected from Table 6.3.4.2.3-1 or 6.3.4.2.3-2. ETSI 3GPP TS 36.211 version 10.0.0 Release 10 6.3.4.2.2 60 ETSI TS 136 211 V10.0.0 (2011-01) Precoding for large delay CDD For large-delay CDD, precoding for spatial multiplexing is defined by M ⎦ ⎥ ⎥ ⎥ ⎤ M (i ) = W (i ) D (i )U ⎣ ⎢ ⎢ ⎢ ⎡ y ( P −1) x ( 0 ) (i ) x (υ −1) (i ) ⎦ ⎥ ⎥ ⎥ ⎤ y ( 0 ) (i ) ⎣ ⎢ ⎢ ⎢ ⎡ ap ap layer where the precoding matrix W (i) is of size P ×υ and i = 0,1,..., M symb − 1 , M symb = M symb . The diagonal size- υ × υ matrix D(i ) supporting cyclic delay diversity and the size- υ × υ matrix U are both given by Table 6.3.4.2.2-1 for different numbers of layers υ . The values of the precoding matrix W (i ) shall be selected among the precoder elements in the codebook configured in the eNodeB and the UE. The eNodeB can further confine the precoder selection in the UE to a subset of the elements in the codebook using codebook subset restriction. The configured codebook shall be selected from Table 6.3.4.2.3-1 or 6.3.4.2.3-2. For 2 antenna ports, the precoder is selected according to W (i ) = C1 where C1 denotes the precoding matrix corresponding to precoder index 0 in Table 6.3.4.2.3-1. For 4 antenna ports, the UE may assume that the eNB cyclically assigns different precoders to different vectors [x T (i ) ... x (υ −1) (i ) on the physical downlink shared channel as follows. A different precoder is used every υ vectors, where υ denotes the number of transmission layers in the case of spatial multiplexing. In particular, the precoder is selected according to W ( i ) = C k , where k is the precoder index given by ( 0) i mod 4 + 1 ∈ { , 2 ,3, 4} and C1 , C 2 , C 3 , C 4 denote precoder matrices corresponding to precoder indices 1 υ 12,13,14 and 15, respectively, in Table 6.3.4.2.3-2. ⎠ ⎟ ⎟ ⎞ ⎦ ⎥ ⎥ ⎣⎝ ⎢⎜ ⎜ ⎢⎛ k= Table 6.3.4.2.2-1: Large-delay cyclic delay diversity. U 1 1 − j 4π 4 − j 6π 4 ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 11 e 2 1 e − j 4π 1 e − j 6π e − j 8π 4 4 e 4 e − j12π 4 e e − j12π 4 e − j18π 4 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ⎣ ⎢ ⎢ ⎢ ⎡ 1 − j 2π 4 1 ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 3 0 0 0e 0 0 0 0 0 e 0 0 − j 2πi 4 0 e − j 4πi 3 0 − j 4πi 4 0 0 e − j 6πi 4 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ e e − j 8π 1 0 − j 2πi 3 0e 0 0 ⎦ ⎥ ⎥ ⎥ ⎤ 6.3.4.2.3 3 − j 4π 3 ⎣ ⎢ ⎢ ⎢ ⎡ 1 0e 1 3 0 − j 2πi 2 ⎦ ⎥ ⎥ ⎥ ⎤ ⎣ ⎢ ⎡ 3 1 ⎦ ⎥ ⎤ 1 1 − j 2π 1e 3 1 e − j 4π 1 2 ⎣ ⎢ ⎡ 1 11 − j 2π 21 e 2 4 D (i ) ⎦ ⎥ ⎤ Number of layers υ Codebook for precoding For transmission on two antenna ports, p ∈ {0,1} , the precoding matrix W (i ) shall be selected from Table 6.3.4.2.3-1 or a subset thereof. For the closed-loop spatial multiplexing transmission mode defined in [4], the codebook index 0 is not used when the number of layers is υ = 2 . ETSI 3GPP TS 36.211 version 10.0.0 Release 10 61 ETSI TS 136 211 V10.0.0 (2011-01) Table 6.3.4.2.3-1: Codebook for transmission on antenna ports {0,1} . Number of layers υ 2 1 1 2 −1 11 1 2 1 −1 ⎦⎣ ⎥⎢ ⎤⎡ ⎦ ⎥ ⎤ 11 1 2 j −j ⎣ ⎢ ⎡ 1 ⎣ ⎢ ⎡ ⎣ ⎢ ⎡ ⎦⎣ ⎥⎢ ⎤⎡ 1 2 201 2j 1 ⎣ ⎢ ⎡ 2 −j ⎦ ⎥ ⎤ 1 3 ⎦ ⎥ ⎤ 1 1 10 ⎣ ⎢ ⎡ 0 ⎦ ⎥ ⎤ 1 11 21 ⎦ ⎥ ⎤ Codebook index - For transmission on four antenna ports, p ∈ {0,1,2,3} , the precoding matrix W shall be selected from Table 6.3.4.2.3-2 { or a subset thereof. The quantity Wn s} denotes the matrix defined by the columns given by the set {s} from the H H expression Wn = I − 2u n u n u n u n where I is the 4 × 4 identity matrix and the vector u n is given by Table 6.3.4.2.32. Table 6.3.4.2.3-2: Codebook for transmission on antenna ports {0,1,2,3} . Codebook index Number of layers υ un 1 2 3 W0{14} 2 W0{124} 3 W0{1234} 4 0 u0 = [1 − 1 − 1 − 1] W0{1} 1 u1 = [1 − j 1 W1{1} W1{12} 2 W1{123} 3 W1{1234} 2 2 u 2 = [1 1 − 1 1]T { W2 1} { W2 12} 2 { W2 123} 3 { W2 3214} 2 3 u3 = [1 W3{1} W3{12} 2 W3{123} 3 W3{3214} 2 4 u 4 = 1 ( −1 − j ) { W4 1} { W4 14} 2 { W4 124} 3 { W4 1234} 2 5 u5 W5{1} W5{14} 2 W5{124} 3 W5{1234} 2 6 u6 W6{1} W6{13} 2 W6{134} 3 W6{1324} 2 7 u7 W7{1} W7{13} 2 W7{134} 3 W7{1324} 2 8 u8 = [1 − 1 1 1]T W8{1} W8{12} 2 W8{124} 3 W8{1234} 2 9 u9 = [1 − j − 1 − j ]T W9{1} W9{14} 2 W9{134} 3 W9{1234} 2 10 u10 = [1 1 1 − 1]T {1 W10 } {13 W10 } 2 {123 W10 } 3 {1324 W10 } 2 11 u11 = [1 {1 W11 } {13 W11 } 2 {134 W11 } 3 {1324 W11 } 2 12 u12 = [1 − 1 − 1 1]T {1 W12 } {12 W12 } 2 {123 W12 } 3 {1234 W12 } 2 13 u13 = [1 − 1 1 − 1]T {1 W13 } {13 W13 } 2 {123 W13 } 3 {1324 W13 } 2 14 u14 = [1 1 − 1 − 1]T {1 W14 } {13 W14 } 2 {123 W14 } 3 { W143214} 2 15 u15 = [1 1 1 1]T {1 W15 } {12 W15 } 2 {123 W15 } 3 { W151234} 2 T [ =[ 1 =[ 1 =[ 1 j ]T j 1 − j ]T − j (1 − j ) 2 (1 − j ) 2 j ( −1 − j ) (1 + j ) 2 2 − j (−1 + j ) ( −1 + j ) j −1 2 j ]T j (1 + j ) 2 T T 2 2 T T 2 For the purpose of CSI reporting with eight CSI antenna ports as described in [4], the codebook in Tables 6.3.4.2.3-3 to 6.3.4.2.3-10 shall be assumed, where the quantities ϕ n and vm are given by ETSI 3GPP TS 36.211 version 10.0.0 Release 10 62 ETSI TS 136 211 V10.0.0 (2011-01) ϕ n = e jπn 2 [ vm = 1 e j 2πm 32 e j 4πm 32 e j 6πm 32 T Table 6.3.4.2.3-3: Codebook for 1-layer CSI reporting using antenna ports 15 to 22. i1 i2 0 0 – 15 1 2 3 4 5 6 7 W2(i1),0 W2(i1),1 W2(i1),2 W2(i1),3 W2(i1)+1,0 1 W2(i1)+1,1 W2(i1)+1,2 1 W2(i1)+1,3 1 1 1 1 i1 1 1 i2 8 10 11 12 13 14 15 W2(i1)+ 2,1 1 W2(i1)+ 2, 2 1 W2(i1)+ 2,3 1 W2(i1)+3,0 1 W2(i1)+3,1 1 W2(i1)+3, 2 1 W2(i1)+3,3 vm 8 ϕ n vm 1 ⎣ ⎢ ⎡ ( where Wm1) = ,n 1 ⎦ ⎥ ⎤ 0 - 15 9 W2(i1)+ 2,0 1 Table 6.3.4.2.3-4: Codebook for 2-layer CSI reporting using antenna ports 15 to 22. i1 i2 0 1 2 3 W2(i2,)2i ,0 0 – 15 W2(i2,)2i ,1 W2(i2) 1,2i +1,0 + ) W2(i2+1, 2i +1,1 1 1 1 1 1 i1 1 1 1 i2 4 6 7 ) W2(i2+ 2, 2i + 2,1 1 1 ) W2(i2+3, 2i +3,0 1 1 ) W2(i2+3,2i +3,1 1 1 8 9 10 11 W2(i2,)2i +1,0 1 1 0 – 15 5 W2(i2) 2,2i + 2,0 1+ 1 W2(i2,)2i +1,1 1 1 ) W2(i2+1, 2i + 2,0 1 1 W2(i2) 1,2i + 2,1 1+ 1 i1 i2 0 – 15 i1 i2 14 (2) 1 + 3, 0 1 1 vm 4 ϕ n vm where Wm, m ', n = 15 W2(i2) 1,2i +3,1 1+ 1 ) W 2(i2 +1, 2 i vm' − ϕ n vm ' ⎣ ⎢ ⎡ 0 – 15 13 W2(i2,)2i +3,1 1 1 ⎦ ⎥ ⎤ 12 W2(i2,)2i +3,0 1 1 Table 6.3.4.2.3-5: Codebook for 3-layer CSI reporting using antenna ports 15 to 22. i1 i2 0 0-3 1 W8(i3,)8i ,8i +8 111 ) W8(i3+8,8i ,8i +8 1 11 2 i1 5 ) W8(i3+ 2,8i + 2,8i +10 ) W8(i3+10,8i + 2,8i +10 1 1 1 1 1 1 1 6 ~) W8(i3+ 2,8i +10,8i +10 1 i1 1 1 1 1 1 1 7 ~) W8(i3+10,8i + 2,8i + 2 1 1 1 i2 8 0-3 1 3 ~) W8(i3+8,8i ,8i i2 4 0-3 ~ W8(i3,)8i +8,8i +8 9 ) W8(i3+ 4,8i + 4,8i +12 1 1 1 ) W8(i3+12,8i + 4,8i +12 1 1 1 10 12 13 11 ~) W8(i3+12,8i + 4,8i + 4 14 i1 ~) W8(i3+ 4,8i +12,8i +12 15 1 1 1 1 1 i2 ETSI 1 1 1 1 vm = 24 vm 1 vm ' − vm ' ⎣ ⎢ ⎡ ( 3) where Wm, m ', m" ~) W8(i3+ 6,8i +14,8i +14 ) W8(i3+14,8i +6,8i +14 1 1 1 1 ~) W8(i3+14,8i + 6,8i + 6 1 1 v m" 1 vm ~( ) , Wm3m ',m" = , − vm" 24 vm ⎦ ⎥ ⎤ 1 ETSI TS 136 211 V10.0.0 (2011-01) 1 vm ' vm ' ⎣ ⎢ ⎡ ) W8(i3+6,8i +6,8i +14 0-3 63 1 vm" − v m" ⎦ ⎥ ⎤ 3GPP TS 36.211 version 10.0.0 Release 10 Table 6.3.4.2.3-6: Codebook for 4-layer CSI reporting using antenna ports 15 to 22. i1 i2 0 0-3 1 2 3 W8(i4,)8i +8,0 W8(i4,)8i +8,1 ) W8(i4+ 2,8i +10,0 ) W8(i4+ 2,8i +10,1 1 1 1 1 1 i1 1 1 1 i2 4 6 7 ) W8(i4+ 4,8i +12,1 1 1 ) W8(i4+ 6,8i +14,0 1 1 ) W8(i4+6,8i +14,1 1 1 ( 4) vm vm ' 32 ϕ n vm ϕ n vm' 1 ⎣ ⎢ ⎡ where Wm, m ', n = vm − ϕ n vm vm ' − ϕ n vm' ⎦ ⎥ ⎤ 0-3 5 ) W8(i4+ 4,8i +12,0 1 1 Table 6.3.4.2.3-7: Codebook for 5-layer CSI reporting using antenna ports 15 to 22. i1 i2 0 1 ⎣ ⎢ ⎡ Wi(5) = 0-3 v2i1 − v2i1 v 2i1 +8 v 2i1 +8 v2i1 +8 − v2i1 +8 v2i1 +16 v2i1 +16 ⎦ ⎥ ⎤ v2i1 40 v2i1 1 Table 6.3.4.2.3-8: Codebook for 6-layer CSI reporting using antenna ports 15 to 22. i1 i2 0 v2i1 48 v2i1 ⎣ ⎢ ⎡ 1 1 v2i1 − v2i1 v2i1 +8 v2i1 +8 v2i1 +8 − v2i1 +8 v2i1 +16 v2i1 +16 v2i1 +16 − v2i1 +16 ⎦ ⎥ ⎤ Wi( 6) = 0-3 Table 6.3.4.2.3-9: Codebook for 7-layer CSI reporting using antenna ports 15 to 22. i1 i2 0 v2i1 56 v2i1 1 ⎣ ⎢ ⎡ 1 v2i1 − v2i1 v2i1 +8 v2i1 +8 v2i1 +8 − v2i1 +8 v2i1 +16 v2i1 +16 v2i1 +16 − v2i1 +16 v2i1 + 24 v2i1 + 24 ⎦ ⎥ ⎤ Wi( 7 ) = 0-3 Table 6.3.4.2.3-10: Codebook for 8-layer CSI reporting using antenna ports 15 to 22. i1 i2 0 1 ⎣ ⎢ ⎡ Wi(8) v2i1 − v 2i1 v2i1 +8 v2i1 +8 v2i1 +8 − v2i1 +8 ETSI v2i1 +16 v2i1 +16 v2i1 +16 − v2i1 +16 v2i1 + 24 v2i1 + 24 v2i1 + 24 − v 2i1 + 24 ⎦ ⎥ ⎤ 0 1 v2i1 = 8 v2i1 3GPP TS 36.211 version 10.0.0 Release 10 6.3.4.3 64 ETSI TS 136 211 V10.0.0 (2011-01) Precoding for transmit diversity Precoding for transmit diversity is only used in combination with layer mapping for transmit diversity as described in Section 6.3.3.3. The precoding operation for transmit diversity is defined for two and four antenna ports. [ For transmission on two antenna ports, p ∈ {0,1} , the output y (i ) = y ( 0) (i ) T ap y (1) (i ) , i = 0,1,..., M symb − 1 of the precoding operation is defined by ( ( ( ( ) ) ) ) 10 j 0 Re x ( 0) (i ) 0 −1 0 j Re x (1) (i ) 01 0 j Im x ( 0) (i ) 1 0 − j 0 Im x (1) (i ) ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ ⎣ ⎢⎦ ⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥ ⎡⎤ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ y ( 0) (2i ) 1 y (1) (2i ) = ( 0) y (2i + 1) 2 y (1) (2i + 1) ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ layer ap layer for i = 0,1,..., M symb − 1 with M symb = 2 M symb . [ For transmission on four antenna ports, p ∈ {0,1,2,3} , the output y (i ) = y ( 0) (i ) y (1) (i ) y ( 2 ) (i ) T y (3) (i ) , ap i = 0,1,..., M symb − 1 of the precoding operation is defined by 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 layer 4 M symb layer 4 M symb )− 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 j 0 0 0 0 0 −j 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 j 0 j 0 0 0 0 0 0 0 0 0 0 0 (0) if M symb mod 4 = 0 (0) if M symb mod 4 ≠ 0 0 0 0 0 0 0 0 0 0 0 0 0 Re x ( 0) (i ) 0 Re x (1) (i ) 0 Re x ( 2) (i ) 0 0 Re x (3) (i ) 0 0 Im x ( 0) (i ) j 0 Im x (1) (i ) 0 0 Im x ( 2) (i ) j Im x (3) (i ) 0 00 j 0 00 −j 0 ( ( ( ( ( ( ( ( ) ) ) ) ) ) ) ) ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ ⎩ ⎪ ⎨ ⎪ ⎧ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 6.3.4.4 ( 0 0 0 0 0 0 0 0 ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ layer ap for i = 0,1,..., M symb − 1 with M symb = 10 00 0 −1 00 01 00 10 00 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎣⎥ ⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥ ⎡⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ y ( 0) (4i ) y (1) (4i ) y ( 2) (4i ) y (3) (4i ) ( 0) y (4i + 1) y (1) (4i + 1) y ( 2) (4i + 1) 1 y (3) (4i + 1) = y ( 0) (4i + 2) 2 y (1) (4i + 2) y ( 2) (4i + 2) y (3) (4i + 2) y ( 0) (4i + 3) y (1) (4i + 3) y ( 2) (4i + 3) y (3) (4i + 3) . Precoding for spatial multiplexing using antenna ports with UE-specific reference signals Precoding for spatial multiplexing using antenna ports with UE-specific reference signals is only used in combination with layer mapping for spatial multiplexing as described in Section 6.3.3.2. Spatial multiplexing using antenna ports with UE-specific reference signals supports up to eight antenna ports and the set of antenna ports used is p = 7,8,...,υ + 6 . For transmission on υ antenna ports, the precoding operation is defined by ETSI 65 = x (0) (i ) x (1) (i ) M M y (6 +υ ) (i ) ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ y (8) (i ) ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ y (7 ) (i ) ETSI TS 136 211 V10.0.0 (2011-01) x (υ −1) (i ) ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ 3GPP TS 36.211 version 10.0.0 Release 10 ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ ap ap layer where i = 0,1,..., M symb − 1 , M symb = M symb . 6.3.5 Mapping to resource elements For each of the antenna ports used for transmission of the physical channel, the block of complex-valued symbols ap y ( p ) (0),..., y ( p ) ( M symb − 1) shall be mapped in sequence starting with y ( p ) (0) to resource elements (k , l ) which meet all of the following criteria: - they are in the physical resource blocks corresponding to the virtual resource blocks assigned for transmission, and - they are not used for transmission of PBCH, synchronization signals, cell-specific reference signals, MBSFN reference signals or UE-specific reference signals, and - they are not used for transmission of CSI reference signals and the DCI associated with the downlink transmission uses the C-RNTI or semi-persistent C-RNTI, and - the index l in the first slot in a subframe fulfils l ≥ l DataStart where l DataStart is given by Section 7.1.6.4 of [4]. The mapping to resource elements (k , l ) on antenna port p not reserved for other purposes shall be in increasing order of first the index k over the assigned physical resource blocks and then the index l , starting with the first slot in a subframe. 6.4 Physical downlink shared channel The physical downlink shared channel shall be processed and mapped to resource elements as described in Section 6.3 with the following exceptions: - In resource blocks in which UE-specific reference signals are not transmitted, the PDSCH shall be transmitted on the same set of antenna ports as the PBCH, which is one of {0} , {0,1} , or {0,1,2,3} - In resource blocks in which UE-specific reference signals are transmitted, the PDSCH shall be transmitted on antenna port(s) {5} , {7} , {8} , or p ∈ {7,8,...,υ + 6} , where υ is the number of layers used for transmission of the PDSCH. - The PDSCH may be transmitted in MBSFN subframes not used for PMCH transmission in which case the PDSCH shall be transmitted on one or several of antenna port(s) p ∈ {7,8,...,υ + 6} , where υ is the number of layers used for transmission of the PDSCH. 6.5 Physical multicast channel The physical multicast channel shall be processed and mapped to resource elements as described in Section 6.3 with the following exceptions: - No transmit diversity scheme is specified - Layer mapping and precoding shall be done assuming a single antenna port and the transmission shall use antenna port 4. - The PMCH can only be transmitted in the MBSFN region of an MBSFN subframe. ETSI 3GPP TS 36.211 version 10.0.0 Release 10 - 66 ETSI TS 136 211 V10.0.0 (2011-01) The PMCH shall use extended cyclic prefix. 6.6 Physical broadcast channel 6.6.1 Scrambling The block of bits b(0),..., b( M bit − 1) , where M bit , the number of bits transmitted on the physical broadcast channel, equals 1920 for normal cyclic prefix and 1728 for extended cyclic prefix, shall be scrambled with a cell-specific ~ ~ sequence prior to modulation, resulting in a block of scrambled bits b (0),..., b ( M bit − 1) according to ~ b (i ) = (b(i ) + c(i ) ) mod 2 where the scrambling sequence c(i ) is given by Section 7.2. The scrambling sequence shall be initialised with cell cinit = N ID in each radio frame fulfilling nf mod 4 = 0 . 6.6.2 Modulation ~ ~ The block of scrambled bits b (0),..., b ( M bit − 1) shall be modulated as described in Section 7.1, resulting in a block of complex-valued modulation symbols d (0),..., d ( M symb − 1) . Table 6.6.2-1 specifies the modulation mappings applicable for the physical broadcast channel. Table 6.6.2-1: PBCH modulation schemes. Physical channel PBCH 6.6.3 Modulation schemes QPSK Layer mapping and precoding The block of modulation symbols d (0),..., d ( M symb − 1) shall be mapped to layers according to one of Sections 6.3.3.1 ( 0) or 6.3.3.3 with M symb = M symb and precoded according to one of Sections 6.3.4.1 or 6.3.4.3, resulting in a block of [ T vectors y (i ) = y ( 0) (i ) ... y ( P −1) (i ) , i = 0,..., M symb − 1 , where y ( p ) (i ) represents the signal for antenna port p and where p = 0,..., P − 1 and the number of antenna ports for cell-specific reference signals P ∈ { ,2,4} . 1 6.6.4 Mapping to resource elements The block of complex-valued symbols y ( p ) (0),..., y ( p ) ( M symb − 1) for each antenna port is transmitted during 4 consecutive radio frames starting in each radio frame fulfilling nf mod 4 = 0 and shall be mapped in sequence starting with y (0) to resource elements (k , l ) . The mapping to resource elements (k , l ) not reserved for transmission of reference signals shall be in increasing order of first the index k , then the index l in slot 1 in subframe 0 and finally the radio frame number. The resource-element indices are given by DL RB N RB N sc − 36 + k ' , 2 l = 0,1,...,3 k= k ' = 0,1,...,71 where resource elements reserved for reference signals shall be excluded. The mapping operation shall assume cellspecific reference signals for antenna ports 0-3 being present irrespective of the actual configuration. The UE shall assume that the resource elements assumed to be reserved for reference signals in the mapping operation above but not used for transmission of reference signal are not available for PDSCH transmission. The UE shall not make any other assumptions about these resource elements. ETSI 3GPP TS 36.211 version 10.0.0 Release 10 6.7 67 ETSI TS 136 211 V10.0.0 (2011-01) Physical control format indicator channel The physical control format indicator channel carries information about the number of OFDM symbols used for transmission of PDCCHs in a subframe. The set of OFDM symbols possible to use for PDCCH in a subframe is given by Table 6.7-1. Table 6.7-1: Number of OFDM symbols used for PDCCH. Subframe Number of OFDM symbols for PDCCH when Subframe 1 and 6 for frame structure type 2 MBSFN subframes on a carrier supporting PDSCH, configured with 1 or 2 cell-specific antenna ports MBSFN subframes on a carrier supporting PDSCH, configured with 4 cell-specific antenna ports Subframes on a carrier not supporting PDSCH Non-MBSFN subframes (except subframe 6 for frame structure type 2) configured with positioning reference signals All other cases DL N RB Number of OFDM symbols for > 10 DL PDCCH when N RB ≤ 10 1, 2 1, 2 2 2 2 2 0 1, 2, 3 0 2, 3 1, 2, 3 2, 3, 4 The PCFICH shall be transmitted when the number of OFDM symbols for PDCCH is greater than zero. 6.7.1 Scrambling The block of bits b(0),..., b(31) transmitted in one subframe shall be scrambled with a cell-specific sequence prior to ~ ~ modulation, resulting in a block of scrambled bits b (0),..., b (31) according to ~ b (i ) = (b(i ) + c(i ) ) mod 2 where the scrambling sequence c(i ) is given by Section 7.2. The scrambling sequence generator shall be initialised ( ) cell cell with cinit = (⎣ns 2⎦ + 1) ⋅ 2 N ID + 1 ⋅ 2 9 + N ID at the start of each subframe. 6.7.2 Modulation ~ ~ The block of scrambled bits b (0),..., b (31) shall be modulated as described in Section 7.1, resulting in a block of complex-valued modulation symbols d (0),..., d (15) . Table 6.7.2-1 specifies the modulation mappings applicable for the physical control format indicator channel. Table 6.7.2-1: PCFICH modulation schemes. Physical channel PCFICH 6.7.3 Modulation schemes QPSK Layer mapping and precoding The block of modulation symbols d (0),..., d (15) shall be mapped to layers according to one of Sections 6.3.3.1 or (0) 6.3.3.3 with M symb = 16 and precoded according to one of Sections 6.3.4.1 or 6.3.4.3, resulting in a block of vectors [ T y (i ) = y ( 0) (i ) ... y ( P −1) (i ) , i = 0,...,15 , where y ( p ) (i ) represents the signal for antenna port p and where 1 p = 0,..., P − 1 and the number of antenna ports for cell-specific reference signals P ∈ { ,2,4} . The PCFICH shall be transmitted on the same set of antenna ports as the PBCH. ETSI 3GPP TS 36.211 version 10.0.0 Release 10 6.7.4 68 ETSI TS 136 211 V10.0.0 (2011-01) Mapping to resource elements The mapping to resource elements is defined in terms of quadruplets of complex-valued symbols. Let z ( p ) (i ) = y ( p ) (4i ), y ( p ) (4i + 1), y ( p ) (4i + 2), y ( p ) (4i + 3) denote symbol quadruplet i for antenna port p . For each of the antenna ports, symbol quadruplets shall be mapped in increasing order of i to the four resource-element groups in the first OFDM symbol in a downlink subframe with the representative resource-element as defined in Section 6.2.4 given by z ( p ) (0) is mapped to the resource - element group represented by k = k z ( p ) (1) z ( p) ⎣ ⎦ DL RB ⎣2 N RB 2⎦⋅ N sc DL RB ⎣3N RB 2⎦ N sc DL RB is mapped to the resource - element group represented by k = k + N RB 2 ⋅ N sc 2 (2) is mapped to the resource - element group represented by k = k + z ( p ) (3) is mapped to the resource - element group represented by k = k + 2 2 DL R where the additions are modulo N RB N scB , ( )( RB cell DL k = N sc 2 ⋅ N ID mod 2 N RB ) cell and N ID is the physical-layer cell identity as given by Section 6.11. 6.8 Physical downlink control channel 6.8.1 PDCCH formats The physical downlink control channel carries scheduling assignments and other control information. A physical control channel is transmitted on an aggregation of one or several consecutive control channel elements (CCEs), where a control channel element corresponds to 9 resource element groups. The number of resource-element groups not assigned to PCFICH or PHICH is N REG . The CCEs available in the system are numbered from 0 and N CCE − 1 , where N CCE = ⎣N REG / 9⎦ . The PDCCH supports multiple formats as listed in Table 6.8.1-1. A PDCCH consisting of n consecutive CCEs may only start on a CCE fulfilling i mod n = 0 , where i is the CCE number. Multiple PDCCHs can be transmitted in a subframe. Table 6.8.1-1: Supported PDCCH formats. PDCCH format 0 1 2 3 6.8.2 Number of CCEs 1 2 4 8 Number of resourceelement groups 9 18 36 72 Number of PDCCH bits 72 144 288 576 PDCCH multiplexing and scrambling (i) (i) The block of bits b ( i ) (0),..., b ( i ) ( M bit − 1) on each of the control channels to be transmitted in a subframe, where M bit is the number of bits in one subframe to be transmitted on physical downlink control channel number i , shall be multiplexed, resulting in a block of bits (n (0) (1) b ( 0) (0),..., b ( 0) ( M bit − 1), b (1) (0),..., b (1) ( M bit − 1),..., b ( nPDCCH −1) (0),..., b ( nPDCCH −1) ( M bitPDCCH -1) − 1) , where nPDCCH is the number of PDCCHs transmitted in the subframe. (n (0) (1) The block of bits b ( 0) (0),..., b ( 0) ( M bit − 1), b (1) (0),..., b (1) ( M bit − 1),..., b ( nPDCCH −1) (0),..., b ( nPDCCH −1) ( M bitPDCCH -1) − 1) shall be scrambled with a cell-specific sequence prior to modulation, resulting in a block of scrambled bits ~ ~ b (0),..., b ( M tot − 1) according to ETSI 3GPP TS 36.211 version 10.0.0 Release 10 69 ETSI TS 136 211 V10.0.0 (2011-01) ~ b (i ) = (b(i ) + c(i ) ) mod 2 where the scrambling sequence c(i ) is given by Section 7.2. The scrambling sequence generator shall be initialised cell with cinit = ⎣ns 2⎦2 9 + N ID at the start of each subframe. CCE number n corresponds to bits b(72n), b(72n + 1),..., b(72n + 71) . If necessary, <NIL> elements shall be inserted in the block of bits prior to scrambling to ensure that the PDCCHs starts at the CCE positions as described in [4] and to ensure that the length M tot = 8 N REG ≥ ∑ nPDCCH −1 i =0 (i M bit) of the scrambled block of bits matches the amount of resource- element groups not assigned to PCFICH or PHICH. 6.8.3 Modulation ~ ~ The block of scrambled bits b (0),..., b ( M tot − 1) shall be modulated as described in Section 7.1, resulting in a block of complex-valued modulation symbols d (0),..., d ( M symb − 1) . Table 6.8.3-1 specifies the modulation mappings applicable for the physical downlink control channel. Table 6.8.3-1: PDCCH modulation schemes. Physical channel PDCCH 6.8.4 Modulation schemes QPSK Layer mapping and precoding The block of modulation symbols d (0),..., d ( M symb − 1) shall be mapped to layers according to one of Sections 6.3.3.1 ( 0) or 6.3.3.3 with M symb = M symb and precoded according to one of Sections 6.3.4.1 or 6.3.4.3, resulting in a block of [ T vectors y (i ) = y ( 0) (i ) ... y ( P −1) (i ) , i = 0,..., M symb − 1 to be mapped onto resources on the antenna ports used for transmission, where y ( p ) (i ) represents the signal for antenna port p . The PDCCH shall be transmitted on the same set of antenna ports as the PBCH. 6.8.5 Mapping to resource elements The mapping to resource elements is defined by operations on quadruplets of complex-valued symbols. Let z ( p ) (i ) = y ( p ) (4i ), y ( p ) (4i + 1), y ( p ) (4i + 2), y ( p ) (4i + 3) denote symbol quadruplet i for antenna port p . The block of quadruplets z ( p ) (0),..., z ( p ) ( M quad − 1) , where M quad = M symb 4 , shall be permuted resulting in w( p ) (0),..., w( p ) ( M quad − 1) . The permutation shall be according to the sub-block interleaver in Section 5.1.4.2.1 of [3] with the following exceptions: - the input and output to the interleaver is defined by symbol quadruplets instead of bits - interleaving is performed on symbol quadruplets instead of bits by substituting the terms 'bit', 'bits' and 'bit sequence' in Section 5.1.4.2.1 of [3] by 'symbol quadruplet', 'symbol quadruplets' and 'symbol-quadruplet sequence', respectively <NULL> elements at the output of the interleaver in [3] shall be removed when forming w( p ) (0),..., w( p ) ( M quad − 1) . Note that the removal of <NULL> elements does not affect any <NIL> elements inserted in Section 6.8.2. The block of quadruplets w( p ) (0),..., w( p ) ( M quad − 1) shall be cyclically shifted, resulting in ( ) cell w ( p ) (0),..., w ( p ) ( M quad − 1) where w ( p ) (i ) = w( p ) (i + N ID ) mod M quad . ETSI 3GPP TS 36.211 version 10.0.0 Release 10 70 ETSI TS 136 211 V10.0.0 (2011-01) Mapping of the block of quadruplets w ( p ) (0),..., w ( p ) ( M quad − 1) is defined in terms of resource-element groups, specified in Section 6.2.4, according to steps 1–10 below: 1) Initialize m ′ = 0 (resource-element group number) 2) Initialize k ' = 0 3) Initialize l ' = 0 4) If the resource element (k ′, l ′) represents a resource-element group and the resource-element group is not assigned to PCFICH or PHICH then perform step 5 and 6, else go to step 7 5) Map symbol-quadruplet w ( p ) (m' ) to the resource-element group represented by (k ′, l ′) for each antenna port p 6) Increase m′ by 1 7) Increase l ' by 1 8) Repeat from step 4 if l ' < L , where L corresponds to the number of OFDM symbols used for PDCCH transmission as indicated by the sequence transmitted on the PCFICH 9) Increase k ' by 1 DL R 10) Repeat from step 3 if k ' < N RB ⋅ N scB 6.9 Physical hybrid ARQ indicator channel The PHICH carries the hybrid-ARQ ACK/NACK. Multiple PHICHs mapped to the same set of resource elements constitute a PHICH group, where PHICHs within the same PHICH group are separated through different orthogonal group seq group sequences. A PHICH resource is identified by the index pair nPHICH , nPHICH , where nPHICH is the PHICH group ( number and seq nPHICH ) is the orthogonal sequence index within the group. group For frame structure type 1, the number of PHICH groups N PHICH is constant in all subframes and given by = DL ⎡N g (N RB 8)⎤ DL 2 ⋅ ⎡N g (N RB 8)⎤ ⎩ ⎪ ⎨ ⎪ ⎧ group N PHICH for normal cyclic prefix for extended cyclic prefix group group where N g ∈ { 6 ,1 2 ,1,2} is provided by higher layers. The index nPHICH ranges from 0 to N PHICH − 1 . 1 For frame structure type 2, the number of PHICH groups may vary between downlink subframes and is given by group group group mi ⋅ N PHICH where m i is given by Table 6.9-1 and N PHICH by the expression above. The index nPHICH in a downlink group subframe with non-zero PHICH resources ranges from 0 to mi ⋅ N PHICH − 1 . Table 6.9-1: The factor m i for frame structure type 2. Uplink-downlink configuration 0 1 2 3 4 5 6 0 2 0 0 1 0 0 1 1 1 1 0 0 0 0 1 Subframe number 23456 ---21 --101 -1000 ---00 --000 -0000 ---11 ETSI i 7 0 0 0 - 8 1 1 1 1 - 9 1 0 1 1 0 1 3GPP TS 36.211 version 10.0.0 Release 10 6.9.1 71 ETSI TS 136 211 V10.0.0 (2011-01) Modulation The block of bits b(0),..., b( M bit − 1) transmitted on one PHICH in one subframe shall be modulated as described in Section 7.1, resulting in a block of complex-valued modulation symbols z (0),..., z ( M s − 1) , where M s = M bit . Table 6.9.1-1 specifies the modulation mappings applicable for the physical hybrid ARQ indicator channel. Table 6.9.1-1: PHICH modulation schemes. Physical channel PHICH Modulation schemes BPSK The block of modulation symbols z (0),..., z ( M s − 1) shall be symbol-wise multiplied with an orthogonal sequence and scrambled, resulting in a sequence of modulation symbols d (0),..., d ( M symb − 1) according to ( ) (⎣ PHICH PHICH d (i ) = w i mod N SF ⋅ (1 − 2c(i ) ) ⋅ z i N SF ⎦) where i = 0,..., M symb − 1 PHICH M symb = N SF ⋅ Ms ⎩ ⎨ ⎧ PHICH N SF = 4 normal cyclic prefix 2 extended cyclic prefix and c(i ) is a cell-specific scrambling sequence generated according to Section 7.2. The scrambling sequence generator ( ) cell cell shall be initialised with cinit = (⎣ns 2⎦ + 1) ⋅ 2 N ID + 1 ⋅ 2 9 + N ID at the start of each subframe. [ seq PHICH w( N SF − 1) is given by Table 6.9.1-2 where the sequence index nPHICH corresponds to The sequence w(0) the PHICH number within the PHICH group. Sequence index seq nPHICH 0 1 2 3 4 5 6 7 6.9.2 L L [ Table 6.9.1-2: Orthogonal sequences w(0) PHICH w( N SF − 1) for PHICH. Orthogonal sequence Normal cyclic prefix Extended cyclic prefix [+ 1 [+ 1 [+ 1 [+ 1 [+ j [+ j [+ j [+ j PHICH N SF =4 + 1 + 1 + 1] − 1 + 1 − 1] + 1 − 1 − 1] − 1 − 1 + 1] + j + j + j] − j + j − j] + j − j − j] − j − j + j] PHICH N SF =2 [+ 1 [+ 1 [+ j [+ j + 1] − 1] + j] − j] - Resource group alignment, layer mapping and precoding The block of symbols d (0),..., d ( M symb − 1) should be first aligned with resource element group size, resulting in a block of symbols d ( 0) (0),..., d ( 0) (c ⋅ M symb − 1) , where c = 1 for normal cyclic prefix; and c = 2 for extended cyclic prefix. For normal cyclic prefix, d ( 0) (i ) = d (i ) , for i = 0,..., M symb − 1 . ETSI 3GPP TS 36.211 version 10.0.0 Release 10 72 ETSI TS 136 211 V10.0.0 (2011-01) For extended cyclic prefix, ( 0) (4i ) d ( 0) (4i + 1) d ( 0) (4i + 2) d ( 0) (4i + 3) ( T = [d (2i) [0 0 ⎩ ⎪ ⎨ ⎪ ⎧ [d d (2i + 1) 0 0]T d (2i ) d (2i + 1)]T group nPHICH mod 2 = 0 group nPHICH mod 2 = 1 ) for i = 0,..., M symb 2 − 1 . The block of symbols d ( 0) (0),..., d ( 0) (c ⋅ M symb − 1) shall be mapped to layers and precoded, resulting in a block of [ T vectors y (i ) = y ( 0) (i ) ... y ( P −1) (i ) , i = 0,..., c ⋅ M symb − 1 , where y ( p ) (i ) represents the signal for antenna port p , 1 p = 0,..., P − 1 and the number of cell-specific reference signals P ∈ { ,2,4} . The layer mapping and precoding operation depends on the cyclic prefix length and the number of antenna ports used for transmission of the PHICH. The PHICH shall be transmitted on the same set of antenna ports as the PBCH. For transmission on a single antenna port, P = 1 , layer mapping and precoding are defined by Sections 6.3.3.1 and (0) 6.3.4.1, respectively, with M symb = c ⋅ M symb . For transmission on two antenna ports, P = 2 , layer mapping and precoding are defined by Sections 6.3.3.3 and 6.3.4.3, (0) respectively, with M symb = c ⋅ M symb . (0) For transmission on four antenna ports, P = 4 , layer mapping is defined by Section 6.3.3.3 with M symb = c ⋅ M symb and precoding by 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 j 0 j 0 0 j 0 0 0 0 0 −j 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 ⎣ 0 0 0 0 0 0 0 0 0 ⎦ 0 0 0 0 0 0 0 0 0 0 0 0 Re x ( 0) (i ) 0 Re x (1) (i ) 0 Re x ( 2) (i ) 0 0 Re x (3) (i ) j 0 Im x ( 0) (i ) 0 0 Im x (1) (i ) j Im x ( 2) (i ) 0 0 0 Im x (3) (i ) j 0 00 −j 0 00 ( ( ( ( ( ( ( ( ) ) ) ) ) ) ) ) ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ 10 00 0 −1 00 01 00 10 00 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎣⎥ ⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥ ⎡⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ y ( 0) (4i ) y (1) (4i ) y ( 2) (4i ) y (3) (4i ) y ( 0) (4i + 1) y (1) (4i + 1) y ( 2) (4i + 1) 1 y (3) (4i + 1) = ( 0) y (4i + 2) 2 (1) y (4i + 2) y ( 2) (4i + 2) y (3) (4i + 2) y ( 0) (4i + 3) y (1) (4i + 3) y ( 2) (4i + 3) y (3) (4i + 3) ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ group group if (i + nPHICH ) mod 2 = 0 for normal cyclic prefix, or (i + nPHICH 2 ) mod 2 = 0 for extended cyclic prefix, where group nPHICH is the PHICH group number and i = 0,1, 2 , and by ETSI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ETSI TS 136 211 V10.0.0 (2011-01) 0 0 0 0 0 0 0 0 j 0 0 0 0 0 0 −j 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 j 0 j 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Re x ( 0) (i ) 0 Re x (1) (i ) 0 Re x ( 2) (i ) 0 0 Re x (3) (i ) 0 0 Im x ( 0) (i ) j 0 Im x (1) (i ) 0 0 Im x ( 2) (i ) j Im x (3) (i ) 0 00 j 0 00 −j 0 ( ( ( ( ( ( ( ( ) ) ) ) ) ) ) ) ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ 00 10 00 0 −1 00 01 00 10 ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ y ( 0) (4i ) y (1) (4i ) y ( 2) (4i ) y (3) (4i ) ( 0) y (4i + 1) y (1) (4i + 1) y ( 2) (4i + 1) 1 y (3) (4i + 1) = ( 0) y (4i + 2) 2 y (1) (4i + 2) y ( 2) (4i + 2) y (3) (4i + 2) y ( 0) (4i + 3) y (1) (4i + 3) y ( 2) (4i + 3) y (3) (4i + 3) 73 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎣⎥ ⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥ ⎡⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ 3GPP TS 36.211 version 10.0.0 Release 10 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ otherwise for i = 0,1,2 . 6.9.3 Mapping to resource elements (0) The sequence y ( p ) (0),..., y ( p ) ( M symb − 1) for each of the PHICH groups is defined by y ( p ) ( n) = ∑y ( p) i ( n) where the sum is over all PHICHs in the PHICH group and yi( p ) (n) represents the symbol sequence from the i :th PHICH in the PHICH group. PHICH groups are mapped to PHICH mapping units. For normal cyclic prefix, the mapping of PHICH group m to PHICH mapping unit m' is defined by ~ ( p ) ( n) = y ( p ) ( n) y m' m where group 0,1,..., N PHICH − 1 for frame structure type 1 , group 0,1,..., mi ⋅ N PHICH − 1 for frame structure type 2 ⎩ ⎪ ⎨ ⎪ ⎧ m' = m = and where m i is given by Table 6.9-1. For extended cyclic prefix, the mapping of PHICH group m and m + 1 to PHICH mapping unit m' is defined by ~ ( p ) ( n) = y ( p ) (n) + y ( p ) ( n) y m' m m +1 where m' = m / 2 group 0,2,..., N PHICH − 2 for frame structure type 1 group 0,2,..., mi ⋅ N PHICH − 2 for frame structure type 2 ⎩ ⎪ ⎨ ⎪ ⎧ m= ETSI 3GPP TS 36.211 version 10.0.0 Release 10 74 ETSI TS 136 211 V10.0.0 (2011-01) and where m i is given by Table 6.9-1. Let z ( p ) (i ) = ~ ( p ) (4i ), ~ ( p ) (4i + 1), ~ ( p ) (4i + 2), ~ ( p ) (4i + 3) , i = 0,1,2 denote symbol quadruplet i for antenna port p . y y y y Mapping to resource elements is defined in terms of symbol quadruplets according to steps 1–10 below: 1) For each value of l′ 2) Let nl ′ denote the number of resource element groups not assigned to PCFICH in OFDM symbol l′ 3) Number the resource-element groups not assigned to PCFICH in OFDM symbol l′ from 0 to nl′ − 1 , starting from the resource-element group with the lowest frequency-domain index. 4) Initialize m ′ = 0 (PHICH mapping unit number) 5) For each value of i = 0,1,2 6) Symbol-quadruplet z ( p ) (i ) from PHICH mapping unit m' is mapped to the resource-element group represented by (k ′, l ′) i as defined in Section 6.2.4 where the indices k i′ and li′ are given by steps 7 and 8 below: 7) The time-domain index li′ is given by 0 ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ li′ = (⎣m′ 2⎦ + i + 1) mod 2 (⎣m′ 2⎦ + i + 1) mod 2 i normal PHICH duration, all subframes extended PHICH duration, MBSFN subframes extended PHICH duration, subframe 1 and 6 in frame structure type 2 otherwise 8) Set the frequency-domain index k i′ to the resource-element group assigned the number ni in step 3 above, where ni is given by ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ ni = (⎣N (⎣N (⎣N ⎦) n1 ⎦ + m'+ ⎣nl ′ 3⎦)mod nl ′ n1 ⎦ + m'+ ⎣2 nl ′ 3⎦)mod nl ′ cell ID ⋅ nli′ n1 + m' mod nli′ cell ID ⋅ nli′ cell ID ⋅ nli′ i i i i i=0 i =1 i=2 in case of extended PHICH duration in MBSFN subframes, or extended PHICH duration in subframes 1 and 6 for frame structure type 2 and by ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ ni = (⎣N (⎣N (⎣N ⎦) n0 ⎦ + m '+ ⎣nl ′ 3⎦)mod nl ′ n0 ⎦ + m '+ ⎣2 nl ′ 3⎦)mod nl ′ cell ID ⋅ nli′ n0 + m ' mod nli′ cell ID ⋅ nli′ cell ID ⋅ nli′ i i i i otherwise. 9) Increase m′ by 1. 10) Repeat from step 5 until all PHICH mapping units have been assigned. The PHICH duration is configurable by higher layers according to Table 6.9.3-1. ETSI i=0 i =1 i=2 3GPP TS 36.211 version 10.0.0 Release 10 75 ETSI TS 136 211 V10.0.0 (2011-01) Table 6.9.3-1: PHICH duration in MBSFN and non-MBSFN subframes. PHICH duration Normal Extended 6.10 Non-MBSFN subframes Subframes 1 and 6 in case of All other cases frame structure type 2 1 1 2 3 MBSFN subframes on a carrier supporting PDSCH 1 2 Reference signals Five types of downlink reference signals are defined: - Cell-specific reference signals (CRS) - MBSFN reference signals - UE-specific reference signals (DM-RS) - Positioning reference signals (PRS) - CSI reference signals (CSI-RS) There is one reference signal transmitted per downlink antenna port. 6.10.1 Cell-specific reference signals Cell-specific reference signals shall be transmitted in all downlink subframes in a cell supporting PDSCH transmission. Cell-specific reference signals are transmitted on one or several of antenna ports 0 to 3. Cell-specific reference signals are defined for Δf = 15 kHz only. 6.10.1.1 Sequence generation The reference-signal sequence rl ,ns (m) is defined by rl ,ns (m) = 1 2 (1 − 2 ⋅ c(2m)) + j 1 2 (1 − 2 ⋅ c(2m + 1)), max, m = 0,1,...,2 N RB DL − 1 where ns is the slot number within a radio frame and l is the OFDM symbol number within the slot. The pseudorandom sequence c(i ) is defined in Section 7.2. The pseudo-random sequence generator shall be initialised with ( ) cell cell cinit = 210 ⋅ (7 ⋅ (ns + 1) + l + 1) ⋅ 2 ⋅ N ID + 1 + 2 ⋅ N ID + N CP at the start of each OFDM symbol where 6.10.1.2 1 for normal CP ⎩ ⎨ ⎧ N CP = 0 for extended CP Mapping to resource elements ( The reference signal sequence rl ,ns (m) shall be mapped to complex-valued modulation symbols a k ,pl ) used as reference symbols for antenna port p in slot ns according to ( a k ,pl ) = rl ,ns (m' ) where ETSI 3GPP TS 36.211 version 10.0.0 Release 10 76 ETSI TS 136 211 V10.0.0 (2011-01) k = 6m + (v + vshift ) mod 6 DL 0, N symb − 3 if p ∈ {0,1} ⎩ ⎪ ⎨ ⎪ ⎧ l= if p ∈ {2,3} 1 DL m = 0,1,...,2 ⋅ N RB − 1 max, DL m′ = m + N RB DL − N RB The variables v and vshift define the position in the frequency domain for the different reference signals where v is given by 0 3 if p = 0 and l ≠ 0 3 if p = 1 and l = 0 0 if p = 1 and l ≠ 0 3(ns mod 2) if p = 2 ⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎧ v= if p = 0 and l = 0 3 + 3(ns mod 2) if p = 3 cell The cell-specific frequency shift is given by vshift = N ID mod 6 . Resource elements (k , l ) used for transmission of cell-specific reference signals on any of the antenna ports in a slot shall not be used for any transmission on any other antenna port in the same slot and set to zero. In an MBSFN subframe, cell-specific reference signals shall only be transmitted in the non-MBSFN region of the MBSFN subframe. Figures 6.10.1.2-1 and 6.10.1.2-2 illustrate the resource elements used for reference signal transmission according to the above definition. The notation R p is used to denote a resource element used for reference signal transmission on antenna port p . ETSI 3GPP TS 36.211 version 10.0.0 Release 10 R0 R0 R0 O n e a n t e n n a p o r t R0 R0 R0 l=0 l =6 l =0 R0 R0 l =6 R0 R1 R0 R0 T w o a n t e n n a p o r t s R0 R1 R0 R1 R0 l=0 R0 l =6 l =0 R0 R1 l =6 l =0 R1 R0 l =0 R2 R1 R3 R2 R1 l =6 l =0 R3 R2 R1 R1 l =6 l =6 R1 R1 R0 l =6 l =0 R1 R1 R0 R0 R1 R1 l =6 l =0 R0 R0 ETSI TS 136 211 V10.0.0 (2011-01) R0 R0 l=0 77 R3 R2 l =6 l =0 R3 l =6 l =0 l =6 l =0 l =6 l =0 Figure 6.10.1.2-1. Mapping of downlink reference signals (normal cyclic prefix). ETSI l =6 F o u r a n t e n n a p o r t s 3GPP TS 36.211 version 10.0.0 Release 10 R0 R0 78 ETSI TS 136 211 V10.0.0 (2011-01) R0 R0 R0 O n e a n t e n n a p o r t R0 R0 R0 l=0 l =5 l =5 l =0 ) ( tnemele ecruoseR l,k R1 R1 R1 l =5 l =0 l =0 R0 R1 R0 R0 l =0 R3 R3 R2 R1 R1 l =5 R2 R1 R1 R0 l =5 l =0 l =5 R1 R1 R0 F o u r a n t e n n a p o r t s R0 l =5 R2 R1 R3 R2 l =5 l =0 l =5 l =0 R3 l = 5l = 0 l =5 l =0 stols derebmun-ddo stols derebmun-neve stols derebmun-ddo stols derebmun-neve 2 trop annetnA R0 R1 stols derebmun-ddo stols derebmun-neve R0 l =5 l =0 R0 l =0 R1 l =5 l =0 l =5 3 trop annetnA T w o a n t e n n a p o r t s R0 R0 stols derebmun-ddo stols derebmun-neve R0 R1 trop annetna siht no slobm ys ecnere feR R0 l =0 R1 trop annetna siht no noissimsnart rof desu toN R0 R0 1R R0 1 trop annetnA 0 trop annetnA Figure 6.10.1.2-2. Mapping of downlink reference signals (extended cyclic prefix). 6.10.2 MBSFN reference signals MBSFN reference signals shall be transmitted only when the PMCH is transmitted. MBSFN reference signals are transmitted on antenna port 4. MBSFN reference signals are defined for extended cyclic prefix only. 6.10.2.1 Sequence generation The MBSFN reference-signal sequence rl ,ns (m) is defined by rl ,ns (m) = 1 2 (1 − 2 ⋅ c(2m)) + j 1 2 (1 − 2 ⋅ c(2m + 1)), max, m = 0,1,...,6 N RB DL − 1 where ns is the slot number within a radio frame and l is the OFDM symbol number within the slot. The pseudorandom sequence c(i ) is defined in Section 7.2. The pseudo-random sequence generator shall be initialised with ( ) MBSFN MBSFN cinit = 2 9 ⋅ (7 ⋅ (n s + 1) + l + 1) ⋅ 2 ⋅ N ID + 1 + N ID at the start of each OFDM symbol. 6.10.2.2 Mapping to resource elements The reference-signal sequence rl ,ns (m′) in OFDM symbol l shall be mapped to complex-valued modulation symbols ( a k ,pl ) with p = 4 according to ( a k ,pl ) = rl ,ns (m′) ETSI 3GPP TS 36.211 version 10.0.0 Release 10 79 ETSI TS 136 211 V10.0.0 (2011-01) where ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ l= ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ k= 2m if l ≠ 0 and Δf = 15 kHz 2m + 1 if l = 0 and Δf = 15 kHz 4m if l ≠ 0 and Δf = 7.5 kHz 4m + 2 if l = 0 and Δf = 7.5 kHz if ns mod 2 = 0 and Δf = 15 kHz 2 0,4 if ns mod 2 = 1 and Δf = 15 kHz if ns mod 2 = 0 and Δf = 7.5 kHz 1 0,2 if ns mod 2 = 1 and Δf = 7.5 kHz DL m = 0,1,...,6 N RB − 1 ( max, DL m′ = m + 3 N RB DL − N RB ) Figure 6.10.2.2-1 illustrates the resource elements used for MBSFN reference signal transmission in case of Δf = 15 kHz . In case of Δf = 7.5 kHz for a MBSFN-dedicated cell, the MBSFN reference signal shall be mapped to resource elements according to Figure 6.10.2.2-3. The notation R p is used to denote a resource element used for reference signal transmission on antenna port p . R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 l=0 l =5l =0 l =5 Figure 6.10.2.2-1: Mapping of MBSFN reference signals (extended cyclic prefix, Δf = 15 kHz ). ETSI 3GPP TS 36.211 version 10.0.0 Release 10 80 ETSI TS 136 211 V10.0.0 (2011-01) R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 l = 0 l = 2l = 0 l = 2 stols derebmun -ddo stols derebmun -neve 4 trop annetnA Figure 6.10.2.2-3: Mapping of MBSFN reference signals (extended cyclic prefix, Δf = 7.5 kHz ). 6.10.3 UE-specific reference signals UE-specific reference signals are supported for transmission of PDSCH and are transmitted on antenna port(s) p = 5 , p = 7 , p = 8 or p = 7,8,...,υ + 6 , where υ is the number of layers used for transmission of the PDSCH. UE-specific reference signals are present and are a valid reference for PDSCH demodulation only if the PDSCH transmission is associated with the corresponding antenna port according to Section 7.1 of [4]. UE-specific reference signals are transmitted only on the resource blocks upon which the corresponding PDSCH is mapped. The UE-specific reference signal is not transmitted in resource elements (k , l ) in which one of the physical channels or physical signals other than UE-specific reference signal defined in 6.1 are transmitted using resource elements with the same index pair (k , l ) regardless of their antenna port p . 6.10.3.1 Sequence generation For antenna port 5, the UE-specific reference-signal sequence rns (m) is defined by rns (m) = 1 2 (1 − 2 ⋅ c(2m)) + j 1 2 (1 − 2 ⋅ c(2m + 1)), ETSI PDSCH m = 0,1,...,12 N RB −1 3GPP TS 36.211 version 10.0.0 Release 10 81 ETSI TS 136 211 V10.0.0 (2011-01) PDSCH where N RB denotes the bandwidth in resource blocks of the corresponding PDSCH transmission. The pseudo- random sequence c(i ) is defined in Section 7.2. The pseudo-random sequence generator shall be initialised with ( ) cell cinit = (⎣ns 2⎦ + 1) ⋅ 2 N ID + 1 ⋅ 216 + nRNTI at the start of each subframe where nRNTI is as described in Section 7.1[4]. For any of the antenna ports p ∈ {7,8,...,υ + 6} , the reference-signal sequence r (m ) is defined by 1 2 (1 − 2 ⋅ c(2m)) + j 1 2 (1 − 2 ⋅ c(2m + 1)), m= max, 0,1,...,12 N RB DL − 1 normal cyclic prefix . max, 0,1,...,16 N RB DL − 1 extended cyclic prefix ⎩ ⎪ ⎨ ⎪ ⎧ r ( m) = The pseudo-random sequence c(i ) is defined in Section 7.2. The pseudo-random sequence generator shall be initialised ( ) cell with cinit = (⎣ns / 2⎦ + 1) ⋅ 2 N ID + 1 ⋅ 216 + nSCID at the start of each subframe, where for antenna ports 7 and 8 nSCID is given by the scrambling identity field according to Table 6.10.3.1-1 in the most recent DCI format 2B or 2C [3] associated with the PDSCH transmission. If there is no DCI format 2B or 2C associated with the PDSCH transmission on antenna ports 7 or 8, the UE shall assume that nSCID is zero. For antenna ports 9 to 14, the UE shall assume that nSCID is zero. Table 6.10.3.1-1: Mapping of scrambling identity field in DCI format 2B or 2C to nSCID values for antenna ports 7 and 8. Scrambling identity field in DCI format 2B or 2C [3] 0 0 1 6.10.3.2 nSCID 1 Mapping to resource elements For antenna port 5, in a physical resource block with frequency-domain index nPRB assigned for the corresponding PDSCH transmission, the reference signal sequence rns (m) shall be mapped to complex-valued modulation symbols ( a k ,pl ) with p = 5 in a subframe according to: Normal cyclic prefix: ( PDSCH a k ,pl ) = rns (3 ⋅ l ′ ⋅ N RB + m' ) RB RB k = ( k ′) mod N sc + N sc ⋅ nPRB ⎩ ⎨ ⎧ k′ = if l ∈ {2,3} 4m'+ vshift 4m'+( 2 + vshift ) mod 4 if l ∈ {5,6} 3 l′ = 0 6 l′ = 1 l= 2 l′ = 2 ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ 5 l′ = 3 ⎩ ⎨ ⎧ l′ = 0,1 if ns mod 2 = 0 2,3 if ns mod 2 = 1 PDSCH −1 m' = 0,1,...,3 N RB Extended cyclic prefix: ( PDSCH a k ,pl ) = rns (4 ⋅ l ′ ⋅ N RB + m' ) ETSI 3GPP TS 36.211 version 10.0.0 Release 10 82 ETSI TS 136 211 V10.0.0 (2011-01) RB RB k = (k ′) mod N sc + N sc ⋅ nPRB 0 if ns mod 2 = 0 1,2 if ns mod 2 = 1 ⎩ ⎨ ⎧ l′ = 4 l ′ ∈ {0,2} 1 l′ = 1 ⎩ ⎨ ⎧ l= 3m'+ vshift if l = 4 3m'+ (2 + vshift ) mod 3 if l = 1 ⎩ ⎨ ⎧ k′ = PDSCH −1 m' = 0,1,...,4 N RB where m' is the counter of UE-specific reference signal resource elements within a respective OFDM symbol of the PDSCH transmission. cell The cell-specific frequency shift is given by vshift = N ID mod 3 . The mapping shall be in increasing order of the frequency-domain index nPRB of the physical resource blocks assigned PDSCH denotes the bandwidth in resource blocks of the for the corresponding PDSCH transmission. The quantity N RB corresponding PDSCH transmission. Figure 6.10.3.2-1 illustrates the resource elements used for UE-specific reference signals for normal cyclic prefix for antenna port 5. Figure 6.10.3.2-2 illustrates the resource elements used for UE-specific reference signals for extended cyclic prefix for antenna port 5. The notation R p is used to denote a resource element used for reference signal transmission on antenna port p . R5 R5 R5 R5 R5 R5 R5 R5 R5 R5 l=0 R5 R5 l=6 l =0 l =6 Figure 6.10.3.2-1: Mapping of UE-specific reference signals, antenna port 5 (normal cyclic prefix). ETSI 3GPP TS 36.211 version 10.0.0 Release 10 83 ETSI TS 136 211 V10.0.0 (2011-01) R5 R5 R5 R5 R5 R5 R5 R5 R5 R5 R5 R5 l=0 l = 5l = 0 l =5 Figure 6.10.3.2-2: Mapping of UE-specific reference signals, antenna port 5 (extended cyclic prefix). K For antenna ports p = 7 , p = 8 p = 8 or p = 7,8, , υ + 6 , in a physical resource block with frequency-domain index nPRB assigned for the corresponding PDSCH transmission, a part of the reference signal sequence r (m) shall be ( mapped to complex-valued modulation symbols a k ,pl ) in a subframe according to Normal cyclic prefix: ( max, a k ,pl ) = w p (l ' ) ⋅ r (3 ⋅ l '⋅N RB DL + 3 ⋅ nPRB + m' ) where ⎩ ⎨ ⎧ w p (i ) = (m'+ nPRB ) mod 2 = 0 w p (i) w p (3 − i ) (m'+ nPRB ) mod 2 = 1 RB k = 5m'+ N sc nPRB + k ' 1 0 ⎩ ⎪ ⎨ ⎪ ⎧ ⎩ ⎪ ⎨ ⎪ ⎧ ⎩ ⎨ ⎧ k' = p ∈ {7,8,11,13} p ∈ {9,10,12,14} l ' mod 2 + 2 if in a special subframe with configuration 3, 4, or 8 (see Table 4.2 - 1) ⎦ l = l ' mod 2 + 2 + 3 l ' / 2 l ' mod 2 + 5 if in a special subframe with configuration 1, 2, 6, or 7 (see Table 4.2 - 1) if not in a special subframe ⎣ 0,1,2,3 if ns mod 2 = 0 and in a special subframe with configuration 1, 2, 6, or 7 (see Table 4.2 - 1) l ' = 0,1 if ns mod 2 = 0 and not in special subframe with configuration 1, 2, 6, or 7 (see Table 4.2 - 1) 2,3 if ns mod 2 = 1 and not in special subframe with configuration 1, 2, 6, or 7 (see Table 4.2 - 1) m' = 0,1,2 The sequence w p (i ) is given by Table 6.10.3.2-1. ETSI 3GPP TS 36.211 version 10.0.0 Release 10 84 ETSI TS 136 211 V10.0.0 (2011-01) Table 6.10.3.2-1: The sequence w p (i ) for normal cyclic prefix. Antenna port p [w p (0) 7 8 9 10 11 12 13 14 w p (1) w p (2) w p (3) [+ 1 [+ 1 [+ 1 [+ 1 [+ 1 [− 1 [+ 1 [− 1 + 1 + 1 + 1] − 1 + 1 − 1] + 1 + 1 + 1] − 1 + 1 − 1] + 1 − 1 − 1] − 1 + 1 + 1] − 1 − 1 + 1] + 1 + 1 − 1] Extended cyclic prefix: ( max, a k ,pl ) = w p (l ' ) ⋅ r (4 ⋅ l '⋅N RB DL + 4 ⋅ nPRB + m' ) where ⎩ ⎨ ⎧ w p (i ) = w p (i ) m′ mod 2 = 0 w p (1 − i ) m′ mod 2 = 1 RB k = 3m'+ N sc nPRB + k ' 1 ⎩ ⎨ ⎧ k' = if ns mod 2 = 0 and p ∈ {7,8} 2 if ns mod 2 = 1 and p ∈ {7,8} l = l ′ mod 2 + 4 0,1 if ns mod 2 = 0 and in a special subframe with configuration 1, 2, 3, 5 or 6 (see Table 4.2 - 1) 0,1 if ns mod 2 = 1 and not in a special subframe ⎩ ⎨ ⎧ l' = m' = 0,1,2,3 The sequence w p (i ) is given by Table 6.10.3.2-2. Table 6.10.3.2-2: The sequence w p (i ) for extended cyclic prefix. Antenna port p [w p (0) [+ 1 [− 1 7 8 w p (1) + 1] + 1] For extended cyclic prefix, UE-specific reference signals are not supported on antenna ports 9 to 14. Resource elements (k , l ) used for transmission of UE-specific reference signals to one UE on any of the antenna ports in the set S , where S = {7,8,11,13} or S = {9,10,12,14} shall - not be used for transmission of PDSCH on any antenna port in the same slot, and - not be used for UE-specific reference signals to the same UE on any antenna port other than those in S in the same slot. Figure 6.10.3.2-3 illustrates the resource elements used for UE-specific reference signals for normal cyclic prefix for antenna ports 7, 8, 9 and 10. Figure 6.10.3.2-4 illustrates the resource elements used for UE-specific reference signals for extended cyclic prefix for antenna ports 7, 8. ETSI 3GPP TS 36.211 version 10.0.0 Release 10 S p e c ai sl u b r af m e, c o 7n gfi u r a oti n 1 2, 6, o r R7 R7 R7 R7 R8 R8 85 ETSI TS 136 211 V10.0.0 (2011-01) R8 R8 R9 R9 l=0 R7 R7 R8 R8 l =6 l =0 S p e c ali s u b f r a m e , c o n f gi u r a t oi n 3 , 4 o r 8 R7 R7 l =6 l =0 R7 R7 R10 R10 R9 R9 R10 R10 R10 R10 R9 R9 R7 R7 R8 R8 R7 R7 R10 R10 R9 R9 R7 R7 R9 R9 R9 R9 R10 R10 R10 R10 R8 R8 R8 R8 l=6 l=0 R8 R8 l=6 l=0 l =6 l =0 l =6 l=0 l =6 l =0 l =6 R8 R8 R9 R9 R8 R8 R7 R7 R7 R7 R10 R10 R10 R10 R9 R9 R7 R7 R7 R7 R9 R9 R9 R9 R10 R10 R10 R10 R8 R8 R8 R8 R8 R8 R9 R9 l=0 l =6 l =0 R7 R7 l =6 l =0 R7 R7 l =6 l =0 R8 R8 l =6 l=0 R10 R10 R9 R9 l =6 l =0 l =6 l=0 R10 R10 l =6 l =0 l =6 R8 R8 R9 R9 R7 R7 l =6 l =0 l =6 R8 R8 l =0 R10 R10 R9 R9 R10 R10 R10 R10 R9 R9 Al o t h e r d o w n nil k s u b f r a m e s R7 R7 l=0 R8 R8 R7 R7 R10 R10 R9 R9 R7 R7 R9 R9 R9 R9 R10 R10 R10 R10 R8 R8 R8 R8 l =6 l =0 l =6 l =0 l =6 l =0 l =6 l =0 l =6 l =0 l =6 Figure 6.10.3.2-3: Mapping of UE-specific reference signals, antenna ports 7, 8, 9 and 10 (normal cyclic prefix). R7 R7 R7 R7 R8 R8 R7 R7 R8 R8 R7 R7 l=0 R8 R8 R8 R8 l =5 l =0 l =5 l=0 l =5 l =0 S p e c ali s u b f r a m e , oc rn 6o f gi u r a t oi n 1 , 2 , 3 , 5 R7 R7 R8 R8 R7 R7 R8 R8 R8 R8 Al o t h e r d o w n nli k s u b f r a m e s R7 R7 R8 R8 R7 R7 R8 R8 R7 R7 R8 R8 R7 R7 R7 R7 R8 R8 R7 R7 l =0 l =5 l =0 l =5 R8 R8 l =5 l=0 l =5 l =0 l =5 Figure 6.10.3.2-4: Mapping of UE-specific reference signals, antenna ports 7 and 8 (extended cyclic prefix). ETSI 3GPP TS 36.211 version 10.0.0 Release 10 6.10.4 86 ETSI TS 136 211 V10.0.0 (2011-01) Positioning reference signals Positioning reference signals shall only be transmitted in resource blocks in downlink subframes configured for positioning reference signal transmission. If both normal and MBSFN subframes are configured as positioning subframes within a cell, the OFDM symbols in a MBSFN subframe configured for positioning reference signal transmission shall use the same cyclic prefix as used for subframe #0. If only MBSFN subframes are configured as positioning subframes within a cell, the OFDM symbols configured for positioning reference signals in these subframes shall use extended cyclic prefix length. In a subframe configured for positioning reference signal transmission, the starting positions of the OFDM symbols configured for positioning reference signal transmission shall be identical to those in a subframe in which all OFDM symbols have the same cyclic prefix length as the OFDM symbols configured for positioning reference signal transmission. Positioning reference signals are transmitted on antenna port 6. The positioning reference signals shall not be mapped to resource elements (k , l ) allocated to PBCH, PSS or SSS regardless of their antenna port p . Positioning reference signals are defined for Δf = 15 kHz only. 6.10.4.1 Sequence generation The reference-signal sequence rl , ns (m) is defined by rl ,ns (m) = 1 2 1 (1 − 2 ⋅ c(2m)) + j 2 (1 − 2 ⋅ c(2m + 1)), max, m = 0,1,...,2 N RB DL − 1 where ns is the slot number within a radio frame, l is the OFDM symbol number within the slot. The pseudo-random sequence c(i ) is defined in Section 7.2. The pseudo-random sequence generator shall be initialised with ( ) cell cell cinit = 210 ⋅ (7 ⋅ (ns + 1) + l + 1) ⋅ 2 ⋅ N ID + 1 + 2 ⋅ N ID + N CP at the start of each OFDM symbol where 1 ⎩ ⎨ ⎧ N CP = 6.10.4.2 for normal CP 0 for extended CP Mapping to resource elements ( The reference signal sequence rl ,ns (m) shall be mapped to complex-valued modulation symbols a k ,pl ) used as reference signal for antenna port p = 6 in slot ns according to ( ak ,pl) = rl , ns (m' ) where Normal cyclic prefix: ( ) DL PRS k = 6 m + N RB − N RB + (6 − l + vshift ) mod 6 3,5,6 if ns mod 2 = 0 2,3,5,6 if ns mod 2 = 1 and (4 PBCH antenna ports ) ⎩ ⎪ ⎨ ⎪ ⎧ l = 1,2,3,5,6 if ns mod 2 = 1 and (1 or 2 PBCH antenna ports ) K m = 0,1, PRS ,2 ⋅ N RB − 1 max, PRS m′ = m + N RB DL − N RB Extended cyclic prefix: ETSI 3GPP TS 36.211 version 10.0.0 Release 10 87 ( ETSI TS 136 211 V10.0.0 (2011-01) ) DL PRS k = 6 m + N RB − N RB + (5 − l + vshift ) mod 6 4,5 if ns mod 2 = 0 2,4,5 if ns mod 2 = 1 and (4 PBCH antenna ports ) ⎩ ⎪ ⎨ ⎪ ⎧ l = 1,2,4,5 if ns mod 2 = 1 and (1 or 2 PBCH antenna ports ) K m = 0,1, PRS ,2 ⋅ N RB − 1 max, PRS m′ = m + N RB DL − N RB PRS The bandwidth for positioning reference signals and N RB is configured by higher layers and the cell-specific cell frequency shift is given by vshift = N ID mod 6 . R6 R6 R6 R6 R6 R6 a n t e n n a p o r t s R6 a n t e n n a R6 R6 R6 p o r t s R6 R6 O n e a n d t w o P B C H R6 l=0 R6 R6 R6 R6 R6 R6 R6 l=6 l=0 R6 R6 R6 R6 R6 R6 F o u r P B C H R6 R6 R6 l=6 l=0 R6 l=6 l=0 l=6 Figure 6.10.4.2-1: Mapping of positioning reference signals (normal cyclic prefix) R6 R6 R6 R6 R6 R6 R6 R6 R6 R6 R6 R6 R6 R6 R6 l =0 R6 R6 R6 l =5 l =0 R6 R6 R6 l=0 l =5 l =5 l =0 R6 l =5 Figure 6.10.4.2-2: Mapping of positioning reference signals (extended cyclic prefix) 6.10.4.3 Positioning reference signal subframe configuration The cell specific subframe configuration period TPRS and the cell specific subframe offset Δ PRS for the transmission of positioning reference signals are listed in Table 6.10.4.3-1. The PRS configuration index I PRS is configured by higher layers. Positioning reference signals are transmitted only in configured DL subframes. Positioning reference signals ETSI 3GPP TS 36.211 version 10.0.0 Release 10 88 ETSI TS 136 211 V10.0.0 (2011-01) shall not be transmitted in special subframes. Positioning reference signals shall be transmitted in N PRS consecutive downlink subframes, where N PRS is configured by higher layers. The positioning reference signal instances, for the first subframe of the N PRS downlink subframes, shall satisfy (10 × nf + ⎣ns / 2⎦ − Δ PRS ) mod TPRS = 0 . Table 6.10.4.3-1: Positioning reference signal subframe configuration PRS subframe offset Δ PRS (subframes) I PRS 0 – 159 PRS periodicity TPRS (subframes) 160 160 – 479 320 I PRS − 160 480 – 1119 640 I PRS − 480 1120 – 2399 2400-4095 1280 PRS configuration Index I PRS 6.10.5 I PRS − 1120 Reserved CSI reference signals CSI reference signals are transmitted on one, two, four or eight antenna ports using p = 15 , p = 15,16 , p = 15,...,18 and p = 15,...,22 , respectively. CSI reference signals are defined for Δf = 15 kHz only. 6.10.5.1 Sequence generation The reference-signal sequence rl ,ns (m) is defined by rl ,ns (m) = 1 2 (1 − 2 ⋅ c(2m)) + j 1 2 (1 − 2 ⋅ c(2m + 1)), max, m = 0,1,..., N RB DL − 1 where ns is the slot number within a radio frame and l is the OFDM symbol number within the slot. The pseudorandom sequence c(i ) is defined in Section 7.2. The pseudo-random sequence generator shall be initialised with ( ) cell cell cinit = 210 ⋅ (7 ⋅ (ns + 1) + l + 1) ⋅ 2 ⋅ N ID + 1 + 2 ⋅ N ID + N CP at the start of each OFDM symbol where 6.10.5.2 1 for normal CP ⎩ ⎨ ⎧ N CP = 0 for extended CP Mapping to resource elements In subframes configured for CSI reference signal transmission, the reference signal sequence rl ,ns (m) shall be mapped ( to complex-valued modulation symbols a k ,pl ) used as reference symbols on antenna port p according to ( a k ,pl ) = wl " ⋅ rl ,ns (m' ) where ETSI 3GPP TS 36.211 version 10.0.0 Release 10 −0 −6 −1 −7 k = k '+12m + −0 −3 −6 −9 for for for for for for for for 89 ETSI TS 136 211 V10.0.0 (2011-01) p ∈ { ,16}, normal cyclic prefix 15 p ∈ { ,18}, normal cyclic prefix 17 p ∈ { ,20}, normal cyclic prefix 19 p ∈ {21,22}, normal cyclic prefix p ∈ { ,16}, extended cyclic prefix 15 p ∈ { ,18}, extended cyclic prefix 17 p ∈ { ,20}, extended cyclic prefix 19 p ∈ {21,22}, extended cyclic prefix ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ l" CSI reference signal configurations 0 - 19, normal cyclic prefix l = l '+ 2l" CSI reference signal configurations 20 - 31, normal cyclic prefix l" CSI reference signal configurations 0 - 27, extended cyclic prefix ⎩ ⎪ ⎨ ⎪ ⎧ 1 (− 1)l" ⎩ ⎨ ⎧ wl ′′ = p ∈ { ,17,19,21} 15 p ∈ { ,18,20,22} 16 l" = 0,1 DL m = 0,1,..., N RB − 1 max, DL N RB DL − N RB 2 ⎦ ⎥ ⎥ ⎥ ⎣ ⎢ ⎢ ⎢ m' = m + The quantity (k ' , l ' ) and the necessary conditions on ns are given by Tables 6.10.5.2-1 and 6.10.5.2-2 for normal and extended cyclic prefix, respectively. Multiple CSI reference signal configurations can be used in a given cell, - one configuration for which the UE shall assume non-zero transmission power for the CSI-RS, and - zero or more configurations for which the UE shall assume zero transmission power. For each bit set to one in the 16-bit bitmap ZeroPowerCSI-RS configured by higher layers, the UE shall assume zero transmission power for the resource elements corresponding to the four CSI reference signal column in Tables 6.10.5.21 and 6.10.5.2-2 for normal and extended cyclic prefix, respectively. The most significant bit corresponds to the lowest CSI reference signal configuration index and subsequent bits in the bitmap correspond to configurations with indices in increasing order. CSI reference signals can only occur in - downlink slots where ns mod 2 fulfils the condition in Tables 6.10.5.2-1 and 6.10.5.2-2 for normal and extended cyclic prefix, respectively, and - where the subframe number fulfils the conditions in Section 6.10.5.3. CSI reference signals shall not be transmitted - in the special subframe(s) in case of frame structure type 2, - when transmission of a CSI-RS would collide with transmission of synchronization signals, PBCH, or SystemInformationBlockType1 messages, - in subframes configured for transmission of paging messages. Resource elements (k , l ) used for transmission of CSI reference signals on any of the antenna ports in the set S , where S = { } , S = { ,16} , S = { ,18} , S = { ,20} or S = {21,22} shall 15 15 17 19 - not be used for transmission of PDSCH on any antenna port in the same slot, and - not be used for CSI reference signals on any antenna port other than those in S in the same slot. ETSI 3GPP TS 36.211 version 10.0.0 Release 10 90 ETSI TS 136 211 V10.0.0 (2011-01) The mapping for CSI reference signal configuration 0 is illustrated in Figures 6.10.5.2-1 and 6.10.5.2-2. Table 6.10.5.2-1: Mapping from CSI reference signal configuration to (k ' , l ' ) for normal cyclic prefix. Frame structure type 2 only Frame structure type 1 and 2 CSI reference signal configuration 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 (k ' , l ') (9,5) (11,2) (9,2) (7,2) (9,5) (8,5) (10,2) (8,2) (6,2) (8,5) (3,5) (2,5) (5,2) (4,2) (3,2) (2,2) (1,2) (0,2) (3,5) (2,5) (11,1) (9,1) (7,1) (10,1) (8,1) (6,1) (5,1) (4,1) (3,1) (2,1) (1,1) (0,1) Number of CSI reference signals configured 1 or 2 4 8 ns mod 2 0 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 (k ' , l ') ns mod 2 (k ' , l ') ns mod 2 (9,5) (11,2) (9,2) (7,2) (9,5) (8,5) (10,2) (8,2) (6,2) (8,5) 0 1 1 1 1 0 1 1 1 1 (9,5) (11,2) (9,2) (7,2) (9,5) 0 1 1 1 1 (11,1) (9,1) (7,1) (10,1) (8,1) (6,1) 1 1 1 1 1 1 (11,1) (9,1) (7,1) 1 1 1 Table 6.10.5.2-2: Mapping from CSI reference signal configuration to (k ' , l ' ) for extended cyclic prefix. Fr a Frame structure type 1 and 2 CSI reference signal configuration 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 (k ' , l ') (11,4) (9,4) (10,4) (9,4) (5,4) (3,4) (4,4) (3,4) (8,4) (6,4) (2,4) (0,4) (7,4) (6,4) (1,4) (0,4) (11,1) (10,1) Number of CSI reference signals configured 1 or 2 4 8 ns mod 2 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1 1 1 ETSI (k ' , l ') ns mod 2 (k ' , l ') ns mod 2 (11,4) (9,4) (10,4) (9,4) (5,4) (3,4) (4,4) (3,4) 0 0 1 1 0 0 1 1 (11,4) (9,4) (10,4) (9,4) 0 0 1 1 (11,1) (10,1) 1 1 (11,1) (10,1) 1 1 3GPP TS 36.211 version 10.0.0 Release 10 91 18 19 20 21 (9,1) (5,1) (4,1) (3,1) 1 1 1 1 22 23 24 25 26 27 (8,1) (7,1) (6,1) (2,1) (1,1) (0,1) ETSI TS 136 211 V10.0.0 (2011-01) 1 1 1 1 1 1 R15 R15 (9,1) (5,1) (4,1) (3,1) 1 1 1 1 (9,1) 1 R16 R16 R18 R18 R17 R17 l =6 l =0 l =6 l =0 R19 R19 l =6 l =0 l =6 l =0 l =6 l =0 l =6 l =0 l =6 R20 R20 R21 R21 l =6 l =0 l =6 l=0 stols derebmun-ddo l =0 l =6 l =0 stols derebmun-neve stols derebmun-neve l =6 l =6 l =0 stols derebmun-ddo l =6 l =0 R22 R22 l =6 l =0 stols derebmun-neve stols derebmun-ddo l =0 l =6 l =0 l =6 stols derebmun-ddo l =0 stols derebmun-neve Figure 6.10.5.2-1: Mapping of CSI reference signals (CSI configuration 0, normal cyclic prefix). R15 R15 R16 R16 R17 R17 l =0 l = 5l = 0 l =5 l =0 R19 R19 l = 5l = 0 l =5 l =0 l =5 l =0 l = 5l = 0 R18 R18 l =5 l =0 l = 5l = 0 l =5 l =0 l =5 R20 R20 R21 R21 l =0 l = 5l = 0 l =5 l =0 l = 5l = 0 l = 5l = 0 R22 R22 l = 5l = 0 l =5 Figure 6.10.5.2-2: Mapping of CSI reference signals (CSI configuration 0, extended cyclic prefix). 6.10.5.3 CSI reference signal subframe configuration The cell-specific subframe configuration period TCSI - RS and the cell-specific subframe offset Δ CSI - RS for the occurence of CSI reference signals are listed in Table 6.10.5.3-1. The parameter I CSI − RS can be configured separately for CSI ETSI 3GPP TS 36.211 version 10.0.0 Release 10 92 ETSI TS 136 211 V10.0.0 (2011-01) reference signals for which the UE shall assume non-zero and zero transmission power. Subframes containing CSI reference signals shall satisfy (10nf + ⎣ns 2⎦ − Δ CSI − RS ) mod TCSI − RS = 0 . Table 6.10.5.3-1: CSI reference signal subframe configuration. CSI-RS subframe offset Δ CSI - RS (subframes) 0–4 CSI-RS periodicity TCSI - RS (subframes) 5 5 – 14 10 I CSI − RS − 5 15 – 34 20 I CSI − RS − 15 35 – 74 40 I CSI − RS − 35 75 – 154 80 I CSI − RS − 75 CSI-RS-SubframeConfig I CSI − RS 6.11 I CSI − RS Synchronization signals There are 504 unique physical-layer cell identities. The physical-layer cell identities are grouped into 168 unique physical-layer cell-identity groups, each group containing three unique identities. The grouping is such that each physical-layer cell identity is part of one and only one physical-layer cell-identity group. A physical-layer cell identity (1) (2) (1) cell N ID = 3 N ID + N ID is thus uniquely defined by a number N ID in the range of 0 to 167, representing the physical-layer (2) cell-identity group, and a number N ID in the range of 0 to 2, representing the physical-layer identity within the physical-layer cell-identity group. 6.11.1 6.11.1.1 Primary synchronization signal Sequence generation The sequence d (n) used for the primary synchronization signal is generated from a frequency-domain Zadoff-Chu sequence according to ⎩ ⎪ ⎨ ⎪ ⎧ d u ( n) = e e −j −j πun ( n +1) 63 πu ( n +1)( n + 2 ) 63 n = 0,1,...,30 n = 31,32,...,61 where the Zadoff-Chu root sequence index u is given by Table 6.11.1.1-1. Table 6.11.1.1-1: Root indices for the primary synchronization signal. (2) N ID 0 1 2 6.11.1.2 Root index u 25 29 34 Mapping to resource elements The mapping of the sequence to resource elements depends on the frame structure. The UE shall not assume that the primary synchronization signal is transmitted on the same antenna port as any of the downlink reference signals. The UE shall not assume that any transmission instance of the primary synchronization signal is transmitted on the same antenna port, or ports, used for any other transmission instance of the primary synchronization signal. The sequence d (n ) shall be mapped to the resource elements according to ETSI 3GPP TS 36.211 version 10.0.0 Release 10 93 a k ,l = d (n ), ETSI TS 136 211 V10.0.0 (2011-01) n = 0,...,61 k = n − 31 + DL RB N RB N sc 2 For frame structure type 1, the primary synchronization signal shall be mapped to the last OFDM symbol in slots 0 and 10. For frame structure type 2, the primary synchronization signal shall be mapped to the third OFDM symbol in subframes 1 and 6. Resource elements (k , l ) in the OFDM symbols used for transmission of the primary synchronization signal where DL RB N RB N sc 2 n = −5,−4,...,−1,62,63,...66 k = n − 31 + are reserved and not used for transmission of the primary synchronization signal. 6.11.2 6.11.2.1 Secondary synchronization signal Sequence generation The sequence d (0),..., d (61) used for the second synchronization signal is an interleaved concatenation of two length-31 binary sequences. The concatenated sequence is scrambled with a scrambling sequence given by the primary synchronization signal. The combination of two length-31 sequences defining the secondary synchronization signal differs between subframe 0 and subframe 5 according to d (2n + 1) = ⎩ ⎪ ⎨ ⎪ ⎧ ⎩ ⎪ ⎨ ⎪ ⎧ d ( 2n) = ( s0m0 ) (n)c0 (n ) in subframe 0 ( s1 m1 ) (n)c0 (n ) in subframe 5 ( ( s1 m1 ) (n)c1 (n )z1 m0 ) (n ) in subframe 0 ( ( s0m0 ) (n)c1 (n )z1 m1 ) (n ) in subframe 5 (1) where 0 ≤ n ≤ 30 . The indices m 0 and m1 are derived from the physical-layer cell-identity group N ID according to m0 = m′ mod 31 m1 = (m0 + ⎣m′ 31⎦ + 1) mod 31 (1) N ID + q′(q′ + 1) 2 (1) , q′ = N ID 30 30 ⎦ ⎥ ⎥ ⎥ ⎣ ⎢ ⎢ ⎢ (1) m′ = N ID + q (q + 1) 2 , q = ⎣ ⎦ where the output of the above expression is listed in Table 6.11.2.1-1. ( ( The two sequences s0m0 ) (n) and s1 m1 ) (n) are defined as two different cyclic shifts of the m-sequence ~ (n) according s to ( s0m0 ) (n) = ~((n + m0 ) mod 31) s s ( m1 ) (n) = ~ ((n + m ) mod 31) s 1 1 where ~ (i ) = 1 − 2 x(i ) , 0 ≤ i ≤ 30 , is defined by s x(i + 5) = (x(i + 2) + x(i ) )mod 2, 0 ≤ i ≤ 25 with initial conditions x(0) = 0, x(1) = 0, x(2) = 0, x(3) = 0, x(4) = 1 . ETSI 3GPP TS 36.211 version 10.0.0 Release 10 94 ETSI TS 136 211 V10.0.0 (2011-01) The two scrambling sequences c0 (n) and c1 (n) depend on the primary synchronization signal and are defined by two c different cyclic shifts of the m-sequence ~ (n) according to (2 ~ c0 (n) = c ((n + N ID) ) mod 31) ~ c (n) = c ((n + N ( 2) + 3) mod 31) 1 ID (2 (1) where N ID) ∈ {0,1,2} is the physical-layer identity within the physical-layer cell identity group N ID and ~ c (i ) = 1 − 2 x(i ) , 0 ≤ i ≤ 30 , is defined by x(i + 5) = (x(i + 3) + x(i ) )mod 2, 0 ≤ i ≤ 25 with initial conditions x(0) = 0, x(1) = 0, x(2) = 0, x(3) = 0, x(4) = 1 . ( ( The scrambling sequences z1 m0 ) (n) and z1 m1 ) (n) are defined by a cyclic shift of the m-sequence ~ (n) according to z ( z1 m0 ) (n) = ~ ((n + (m0 mod 8)) mod 31) z ( z1 m1 ) (n) = ~ ((n + (m1 mod 8)) mod 31) z where m 0 and m1 are obtained from Table 6.11.2.1-1 and ~ (i ) = 1 − 2 x(i ) , 0 ≤ i ≤ 30 , is defined by z x(i + 5) = (x(i + 4) + x(i + 2) + x(i + 1) + x(i ) ) mod 2, with initial conditions x(0) = 0, x(1) = 0, x(2) = 0, x(3) = 0, x(4) = 1 . ETSI 0 ≤ i ≤ 25 3GPP TS 36.211 version 10.0.0 Release 10 95 ETSI TS 136 211 V10.0.0 (2011-01) (1) Table 6.11.2.1-1: Mapping between physical-layer cell-identity group N ID and the indices m 0 and m1 . (1) N ID m0 m1 (1) N ID m0 m1 (1) N ID m0 m1 (1) N ID m0 m1 (1) N ID m0 m1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 0 1 2 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 2 3 4 5 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 0 1 2 3 4 5 6 7 8 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3 4 5 6 7 8 9 10 11 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 15 16 17 18 19 20 21 22 23 24 25 26 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 19 20 21 22 23 24 25 26 27 28 29 30 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 - 22 23 24 25 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 - 27 28 29 30 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 7 8 9 - 6.11.2.2 Mapping to resource elements The mapping of the sequence to resource elements depends on the frame structure. In a subframe for frame structure type 1 and in a half-frame for frame structure type 2, the same antenna port as for the primary synchronization signal shall be used for the secondary synchronization signal. The sequence d (n ) shall be mapped to resource elements according to a k ,l = d (n ), k = n − 31 + ⎩ ⎪ ⎨ ⎪ ⎧ l= n = 0,...,61 DL RB N RB N sc 2 DL N symb − 2 in slots 0 and 10 for frame structure type 1 DL N symb − 1 in slots 1 and 11 Resource elements (k , l ) where ETSI for frame structure type 2 3GPP TS 36.211 version 10.0.0 Release 10 k = n − 31 + ⎩ ⎪ ⎨ ⎪ ⎧ l= 96 ETSI TS 136 211 V10.0.0 (2011-01) DL RB N RB N sc 2 DL N symb − 2 in slots 0 and 10 for frame structure type 1 DL N symb − 1 in slots 1 and 11 for frame structure type 2 n = −5,−4,...,−1,62,63,...66 are reserved and not used for transmission of the secondary synchronization signal. 6.12 OFDM baseband signal generation The time-continuous signal sl( p ) (t ) on antenna port p in OFDM symbol l in a downlink slot is defined by ∑ DL RB k = − N RB N sc / 2 ⋅e j 2πkΔf (t − N CP ,l Ts ) DL RB N RB N sc / 2 + ∑ a ( (p+)) ⋅ e k k =1 ⎦ (t ) = a ( p−)) k ( ,l ⎡ −1 ⎤ sl( p ) j 2πkΔf (t − N CP ,l Ts ) ,l ⎣ DL RB DL RB for 0 ≤ t < (N CP ,l + N )× Ts where k ( − ) = k + N RB N sc 2 and k ( + ) = k + N RB N sc 2 − 1 . The variable N equals ⎣ ⎦ ⎣ ⎦ 2048 for Δf = 15 kHz subcarrier spacing and 4096 for Δf = 7.5 kHz subcarrier spacing. The OFDM symbols in a slot shall be transmitted in increasing order of l , starting with l = 0 , where OFDM symbol l > 0 starts at time ∑ l −1 l ′= 0 ( N CP ,l ′ + N )Ts within the slot. In case the first OFDM symbol(s) in a slot use normal cyclic prefix and the remaining OFDM symbols use extended cyclic prefix, the starting position the OFDM symbols with extended cyclic prefix shall be identical to those in a slot where all OFDM symbols use extended cyclic prefix. Thus there will be a part of the time slot between the two cyclic prefix regions where the transmitted signal is not specified. Table 6.12-1 lists the value of N CP ,l that shall be used. Note that different OFDM symbols within a slot in some cases have different cyclic prefix lengths. Table 6.12-1: OFDM parameters. Cyclic prefix length N CP ,l Configuration Normal cyclic prefix Extended cyclic prefix 6.13 Δf = 15 kHz 160 for l = 0 144 for l = 1,2,...,6 Δf = 15 kHz 512 for l = 0,1,...,5 Δf = 7.5 kHz 1024 for l = 0,1,2 Modulation and upconversion Modulation and upconversion to the carrier frequency of the complex-valued OFDM baseband signal for each antenna port is shown in Figure 6.13-1. The filtering required prior to transmission is defined by the requirements in [6]. ETSI 3GPP TS 36.211 version 10.0.0 Release 10 97 ETSI TS 136 211 V10.0.0 (2011-01) cos (2πf 0t ) { } Re sl( p ) (t ) sl( p ) (t ) { } Im sl( p ) (t ) − sin (2πf 0t ) Figure 6.13-1: Downlink modulation. 7 Generic functions 7.1 Modulation mapper The modulation mapper takes binary digits, 0 or 1, as input and produces complex-valued modulation symbols, x=I+jQ, as output. 7.1.1 BPSK In case of BPSK modulation, a single bit, b(i ) , is mapped to a complex-valued modulation symbol x=I+jQ according to Table 7.1.1-1. Table 7.1.1-1: BPSK modulation mapping. I b(i ) 0 1 7.1.2 1 −1 Q 2 1 −1 2 2 2 QPSK In case of QPSK modulation, pairs of bits, b(i ), b(i + 1) , are mapped to complex-valued modulation symbols x=I+jQ according to Table 7.1.2-1. Table 7.1.2-1: QPSK modulation mapping. b(i ), b(i + 1) I Q 00 1 2 1 01 1 2 −1 10 −1 2 1 11 −1 2 −1 ETSI 2 2 2 2 3GPP TS 36.211 version 10.0.0 Release 10 7.1.3 98 ETSI TS 136 211 V10.0.0 (2011-01) 16QAM In case of 16QAM modulation, quadruplets of bits, b(i ), b(i + 1), b(i + 2), b(i + 3) , are mapped to complex-valued modulation symbols x=I+jQ according to Table 7.1.3-1. Table 7.1.3-1: 16QAM modulation mapping. b(i ), b(i + 1), b(i + 2), b(i + 3) I Q 0000 1 10 1 10 0001 1 10 3 0010 3 10 1 10 0011 3 10 3 0100 1 10 − 1 10 0101 1 10 −3 0110 3 10 − 1 10 0111 3 10 −3 10 10 10 10 1000 1 10 1001 − 1 10 3 1010 −3 10 1 10 1011 −3 10 3 1100 − 1 10 − 1 10 1101 − 1 10 −3 1110 −3 10 − 1 10 1111 7.1.4 − 1 10 −3 10 −3 10 10 10 10 64QAM In case of 64QAM modulation, hextuplets of bits, b(i ), b(i + 1), b(i + 2), b(i + 3), b(i + 4), b(i + 5) , are mapped to complexvalued modulation symbols x=I+jQ according to Table 7.1.4-1. ETSI 3GPP TS 36.211 version 10.0.0 Release 10 99 ETSI TS 136 211 V10.0.0 (2011-01) Table 7.1.4-1: 64QAM modulation mapping. b (i ), b (i + 1), b (i + 2), b (i + 3), b (i + 4), b (i + 5) I b (i ), b (i + 1), b (i + 2), b (i + 3), b (i + 4), b (i + 5) Q I Q 42 100000 −3 42 3 42 1 42 100001 −3 42 1 42 42 3 42 100010 −1 42 3 42 1 42 1 42 100011 −1 42 1 42 000100 3 42 5 42 100100 −3 42 5 42 000101 3 42 7 42 100101 −3 42 7 42 000110 1 42 5 42 100110 −1 42 5 42 000111 1 42 7 42 100111 −1 42 7 42 001000 5 42 3 42 101000 −5 42 3 42 001001 5 42 1 42 101001 −5 42 1 42 001010 7 42 3 42 101010 −7 42 3 42 001011 7 42 1 42 101011 −7 42 1 42 001100 5 42 5 42 101100 −5 42 5 42 001101 5 42 7 42 101101 −5 42 7 42 001110 7 42 5 42 101110 −7 42 5 42 001111 7 42 7 42 101111 −7 42 7 42 010000 3 42 −3 42 110000 −3 42 −3 42 010001 3 42 −1 42 110001 −3 42 −1 42 010010 1 42 −3 42 110010 −1 42 −3 42 010011 1 42 −1 42 110011 −1 42 −1 42 010100 3 42 −5 42 110100 −3 42 −5 42 010101 3 42 −7 42 110101 −3 42 −7 42 010110 1 42 −5 42 110110 −1 42 −5 42 010111 1 42 −7 42 110111 −1 42 −7 42 011000 5 42 −3 42 111000 −5 42 −3 42 011001 5 42 −1 42 111001 −5 42 −1 42 011010 7 42 −3 42 111010 −7 42 −3 42 011011 7 42 −1 42 111011 −7 42 −1 42 011100 5 42 −5 42 111100 −5 42 −5 42 011101 5 42 −7 42 111101 −5 42 −7 42 011110 7 42 −5 42 111110 −7 42 −5 42 011111 7 42 −7 42 111111 −7 42 −7 42 000000 42 3 000001 3 42 000010 1 000011 7.2 3 Pseudo-random sequence generation Pseudo-random sequences are defined by a length-31 Gold sequence. The output sequence c(n) of length M PN , where n = 0,1,..., M PN − 1 , is defined by ETSI 3GPP TS 36.211 version 10.0.0 Release 10 100 ETSI TS 136 211 V10.0.0 (2011-01) c(n) = ( x1 (n + N C ) + x 2 (n + N C ) ) mod 2 x1 (n + 31) = ( x1 (n + 3) + x1 (n)) mod 2 x2 (n + 31) = ( x2 (n + 3) + x2 (n + 2) + x 2 (n + 1) + x2 (n) ) mod 2 where N C = 1600 and the first m-sequence shall be initialized with x1 (0) = 1, x1 (n) = 0, n = 1,2,...,30 . The initialization of the second m-sequence is denoted by cinit = ∑ 30 x (i ) ⋅ 2 i =0 2 i with the value depending on the application of the sequence. 8 Timing 8.1 Uplink-downlink frame timing Transmission of the uplink radio frame number i from the UE shall start ( N TA + N TA offset ) × Ts seconds before the start of the corresponding downlink radio frame at the UE, where 0 ≤ N TA ≤ 20512 , N TA offset = 0 for frame structure type 1 and N TA offset = 624 for frame structure type 2. Note that not all slots in a radio frame may be transmitted. One example hereof is TDD, where only a subset of the slots in a radio frame is transmitted. (N TA + N TA offset ) ⋅ Ts seconds Figure 8.1-1: Uplink-downlink timing relation. ETSI 3GPP TS 36.211 version 10.0.0 Release 10 101 ETSI TS 136 211 V10.0.0 (2011-01) Annex A (informative): Change history Change history Date TSG # TSG Doc. CR 2006-09-24 2006-10-09 2006-10-13 2006-10-23 2006-11-06 2006-11-09 2006-11-10 2006-11-27 2006-12-14 2007-01-15 2007-01-19 2007-02-01 2007-02-12 2007-02-16 2007-02-16 2007-02-21 2007-03-03 RAN#35 RP-070169 2007-04-25 - - - 2007-05-03 2007-05-08 2007-05-11 2007-05-11 2007-05-15 2007-06-05 2007-06-25 2007-07-10 2007-08-10 2007-08-20 2007-08-24 2007-08-27 2007-09-05 2007-09-08 12/09/07 28/11/07 RAN#37 RP-070729 RAN_37 RP-070729 RAN_38 RP-070949 0001 28/11/07 RAN_38 RP-070949 0002 05/03/08 RAN_39 RP-080219 0003 28/05/08 RAN_40 RP-080432 0004 28/05/08 28/05/08 28/05/08 28/05/08 28/05/08 28/05/08 RAN_40 RAN_40 RAN_40 RAN_40 RAN_40 RAN_40 28/05/08 RAN_40 RP-080432 0012 28/05/08 28/05/08 28/05/08 28/05/08 28/05/08 28/05/08 28/05/08 28/05/08 28/05/08 28/05/08 28/05/08 28/05/08 RAN_40 RAN_40 RAN_40 RAN_40 RAN_40 RAN_40 RAN_40 RAN_40 RAN_40 RAN_40 RAN_40 RAN_40 RP-080432 RP-080432 RP-080432 RP-080432 RP-080432 RP-080432 RP-080432 RP-080432 RP-080432 RP-080432 RP-080432 RP-080432 RP-080432 RP-080432 RP-080432 RP-080432 RP-080432 RP-080432 0005 0006 0007 0008 0009 0010 0015 0016 0017 0018 0019 0021 0022 0023 0024 0025 0026 0027 Rev Subject/Comment Draft version created Updated skeleton Endorsed by RAN1 Inclusion of decision from RAN1#46bis Updated editor"s version Updated editor"s version Endorsed by RAN1#47 Editor"s version, including decisions from RAN1#47 Updated editor"s version Updated editor"s version Endorsed by RAN1#47bis Editor"s version, including decisions from RAN1#47bis Updated editor"s version Endorsed by RAN1#48 Editor"s version, including decisions from RAN1#48 Updated editor"s version For information at RAN#35 Editor"s version, including decisions from RAN1#48bis and RAN1 TDD Ad Hoc - Updated editor"s version - Updated editor"s version - Updated editor"s version - Endorsed by RAN1#49 - Editor"s version, including decisions from RAN1#49 - Updated editor"s version - Endorsed by RAN1#49bis - Editor"s version, including decisions from RAN1#49bis - Updated editor"s version - Updated editor"s version - Endorsed by RAN1#50 - Editor"s version, including decisions from RAN1#50 - Updated editor"s version - For approval at RAN#37 Approved version - Introduction of optimized FS2 for TDD Introduction of scrambling sequences, uplink reference signal - sequences, secondary synchronization sequences and control channel processing Update of uplink reference-signal hopping, downlink reference 1 signals, scrambling sequences, DwPTS/UpPTS lengths for TDD and control channel processing Correction of the number of subcarriers in PUSCH transform precoding - Correction of PHICH mapping - Correction of PUCCH resource index for PUCCH format 2 3 Correction of the predefined hopping pattern for PUSCH - Non-binary hashing functions 1 PUCCH format 1 1 CR on Uplink DM RS hopping Correction to limitation of constellation size of ACK transmission in 1 PUSCH 1 PHICH mapping for one and two antenna ports in extended CP 1 Correction of PUCCH in absent of mixed format - Specification of CCE size and PHICH resource indication 3 Correction of the description of frame structure type 2 - On Delta^pucch_shift correction - Corrections to Secondary Synchronization Signal Mapping - Downlink VRB mapping to PRB for distributed transmission - Clarification of modulation symbols to REs mapping for DVRB 1 Consideration on the scrambling of PDSCH - Corrections to Initialization of DL RS Scrambling 1 CR on Downlink RS - CR on Uplink RS ETSI Old 0.0.0 0.0.1 0.1.0 0.1.1 0.1.2 0.1.3 0.2.0 0.2.1 0.2.2 0.2.3 0.3.0 0.3.1 0.3.2 0.4.0 0.4.1 0.4.2 New 0.0.0 0.0.1 0.1.0 0.1.1 0.1.2 0.1.3 0.2.0 0.2.1 0.2.2 0.2.3 0.3.0 0.3.1 0.3.2 0.4.0 0.4.1 0.4.2 1.0.0 1.0.0 1.0.1 1.0.1 1.0.2 1.0.3 1.0.4 1.1.0 1.1.1 1.1.2 1.2.0 1.2.1 1.2.2 1.2.3 1.3.0 1.3.1 1.3.2 2.0.0 8.0.0 1.0.2 1.0.3 1.0.4 1.1.0 1.1.1 1.1.2 1.2.0 1.2.1 1.2.2 1.2.3 1.3.0 1.3.1 1.3.2 2.0.0 8.0.0 8.1.0 8.0.0 8.1.0 8.1.0 8.2.0 8.2.0 8.3.0 8.2.0 8.2.0 8.2.0 8.2.0 8.2.0 8.2.0 8.3.0 8.3.0 8.3.0 8.3.0 8.3.0 8.3.0 8.2.0 8.3.0 8.2.0 8.2.0 8.2.0 8.2.0 8.2.0 8.2.0 8.2.0 8.2.0 8.2.0 8.2.0 8.2.0 8.2.0 8.3.0 8.3.0 8.3.0 8.3.0 8.3.0 8.3.0 8.3.0 8.3.0 8.3.0 8.3.0 8.3.0 8.3.0 3GPP TS 36.211 version 10.0.0 Release 10 102 ETSI TS 136 211 V10.0.0 (2011-01) Change history Date 28/05/08 28/05/08 28/05/08 28/05/08 28/05/08 28/05/08 28/05/08 28/05/08 28/05/08 28/05/08 TSG # RAN_40 RAN_40 RAN_40 RAN_40 RAN_40 RAN_40 RAN_40 RAN_40 RAN_40 RAN_40 TSG Doc. RP-080432 RP-080432 RP-080432 RP-080432 RP-080432 RP-080432 RP-080432 RP-080432 RP-080432 RP-080432 CR Rev 0028 1 0029 1 0030 1 0031 0032 1 0033 0034 0035 0036 0038 - 28/05/08 RAN_40 RP-080432 0040 - 28/05/08 28/05/08 28/05/08 09/09/08 09/09/08 09/09/08 09/09/08 09/09/08 09/09/08 09/09/08 09/09/08 RAN_40 RAN_40 RAN_40 RAN_41 RAN_41 RAN_41 RAN_41 RAN_41 RAN_41 RAN_41 RAN_41 1 1 2 2 09/09/08 RAN_41 RP-080668 57 1 09/09/08 RAN_41 RP-080668 59 - 09/09/08 RAN_41 RP-080668 60 - 09/09/08 RAN_41 RP-080668 61 - 09/09/08 09/09/08 09/09/08 09/09/08 09/09/08 09/09/08 09/09/08 09/09/08 09/09/08 09/09/08 09/09/08 09/09/08 09/09/08 RAN_41 RAN_41 RAN_41 RAN_41 RAN_41 RAN_41 RAN_41 RAN_41 RAN_41 RAN_41 RAN_41 RAN_41 RAN_41 RP-080668 RP-080668 RP-080668 RP-080668 RP-080668 RP-080668 RP-080668 RP-080668 RP-080668 RP-080668 RP-080668 RP-080668 RP-080668 62 63 64 65 66 67 68 69 71 73 74 75 77 1 1 3 - 09/09/08 RAN_41 RP-080668 78 - 09/09/08 03/12/08 03/12/08 03/12/08 03/12/08 03/12/08 03/12/08 03/12/08 03/12/08 03/12/08 03/12/08 03/12/08 03/12/08 03/12/08 03/12/08 03/12/08 03/12/08 03/12/08 03/12/08 03/12/08 03/12/08 RAN_41 RAN_42 RAN_42 RAN_42 RAN_42 RAN_42 RAN_42 RAN_42 RAN_42 RAN_42 RAN_42 RAN_42 RAN_42 RAN_42 RAN_42 RAN_42 RAN_42 RAN_42 RAN_42 RAN_42 RAN_42 RP-080668 RP-081074 RP-081074 RP-081074 RP-081074 RP-081074 RP-081074 RP-081074 RP-081074 RP-081074 RP-081074 RP-081074 RP-081074 RP-081074 RP-081074 RP-081074 RP-081074 RP-081074 RP-081074 RP-081074 RP-081074 79 70 72 80 81 82 83 84 86 87 88 89 92 93 94 95 96 97 98 99 100 1 2 1 2 1 6 1 1 1 - 03/12/08 RAN_42 RP-081074 101 - 03/12/08 03/12/08 RAN_42 RP-081074 RAN_42 RP-081074 105 106 1 - RP-080432 0041 RP-080432 0042 RP-080432 0043 RP-080668 48 RP-080668 49 RP-080668 50 RP-080668 51 RP-080668 52 RP-080668 53 RP-080668 54 RP-080668 56 Subject/Comment Fixed timing advance offset for LTE TDD and half-duplex FDD Timing of random access preamble format 4 Uplink sounding RS bandwidth configuration Use of common RS when UE-specific RS are configured Uplink RS Updates Orthogonal cover sequence for shortened PUCCH format 1a and 1b Clarification of PDCCH mapping TDD PRACH time/frequency mapping Cell Specific Uplink Sounding RS Subframe Configuration PDCCH length for carriers with mixed MBSFN and Unicast Traffic Correction to the scrambling sequence generation for PUCCH, PCFICH, PHICH, MBSFN RS and UE specific RS PDCCH coverage in narrow bandwidths Closed-Loop and Open-Loop Spatial Multiplexing Removal of small-delay CDD Frequency Shifting of UE-specific RS Correction of PHICH to RE mapping in extended CP subframe Corrections to for handling remaining Res PRACH configuration for frame structure type 1 Correction of PUCCH index generation formula Orthogonal cover sequence for shortened PUCCH format 1a and 1b Correction of mapping of ACK/NAK to binary bit values Remaining issues on SRS hopping Correction of n_cs(n_s) and OC/CS remapping for PUCCH formats 1/1a/1b and 2/2a/2b Corrections to Rank information scrambling in Uplink Shared Channel Definition on the slot number for frame structure type 2 Correction of the Npucch sequence upper limit for the formats 1/1a/1b Clarifications for DMRS parameters Correction of n_prs Introducing missing L1 parameters to 36.211 Clarification on reception of synchronization signals Correction to the downlink/uplink timing ACK/NACK Scrambling scheme on PUCCH DCI format1C Refinement for REG Definition for n = 4 Correcting Ncs value for PRACH preamble format 0-3 Correction of the half duplex timing advance offset value Correction to Precoding for Transmit Diversity Clarification on number of OFDM symbols used for PDCCH Number of antenna ports for PDSCH Correction to Type 2 PUSCH predetermined hopping for Nsb=1 operation PRACH frequency location Correction for the definition of UE-specific reference signals Corrections to precoding for large delay CDD Correction to the definition of nbar_oc for extended CP Specification of reserved REs not used for RS Clarification of the random access preamble transmission timing Indexing of PRACH resources within the radio frame Alignment of RAN1/RAN2 specification Clarification on scrambling of ACK/NAK bits for PUCCH format 2a/2b Correction of introduction of shortened SR Corrections to 36.211 Clarification on PUSCH DM RS Cyclic Shift Hopping Correction to the uplink DM RS assignment Clarify the RNTI used in scrambling sequence initialization On linkage Among UL Power Control Parameters Clarification on PUSCH pre-determined hopping pattern Clarification of SRS sequence-group and base sequence number SRS subframe configuration Remaining SRS details for TDD Clarifying UL VRB Allocation Clarification on PUCCH resource hopping Correction for definition of Qm and a pseudo code syntax error in Scrambling. Remaining Issues on SRS of TDD Correction of reference to RAN4 specification of supported uplink ETSI Old 8.2.0 8.2.0 8.2.0 8.2.0 8.2.0 8.2.0 8.2.0 8.2.0 8.2.0 8.2.0 New 8.3.0 8.3.0 8.3.0 8.3.0 8.3.0 8.3.0 8.3.0 8.3.0 8.3.0 8.3.0 8.2.0 8.3.0 8.2.0 8.2.0 8.2.0 8.3.0 8.3.0 8.3.0 8.3.0 8.3.0 8.3.0 8.3.0 8.3.0 8.3.0 8.3.0 8.3.0 8.4.0 8.4.0 8.4.0 8.4.0 8.4.0 8.4.0 8.4.0 8.4.0 8.3.0 8.4.0 8.3.0 8.4.0 8.3.0 8.4.0 8.3.0 8.4.0 8.3.0 8.3.0 8.3.0 8.3.0 8.3.0 8.3.0 8.3.0 8.3.0 8.3.0 8.3.0 8.3.0 8.3.0 8.3.0 8.4.0 8.4.0 8.4.0 8.4.0 8.4.0 8.4.0 8.4.0 8.4.0 8.4.0 8.4.0 8.4.0 8.4.0 8.4.0 8.3.0 8.4.0 8.3.0 8.4.0 8.4.0 8.4.0 8.4.0 8.4.0 8.4.0 8.4.0 8.4.0 8.4.0 8.4.0 8.4.0 8.4.0 8.4.0 8.4.0 8.4.0 8.4.0 8.4.0 8.4.0 8.4.0 8.4.0 8.4.0 8.5.0 8.5.0 8.5.0 8.5.0 8.5.0 8.5.0 8.5.0 8.5.0 8.5.0 8.5.0 8.5.0 8.5.0 8.5.0 8.5.0 8.5.0 8.5.0 8.5.0 8.5.0 8.5.0 8.5.0 8.4.0 8.5.0 8.4.0 8.4.0 8.5.0 8.5.0 3GPP TS 36.211 version 10.0.0 Release 10 103 ETSI TS 136 211 V10.0.0 (2011-01) Change history Date TSG # TSG Doc. CR 03/12/08 03/12/08 RAN_42 RP-081074 RAN_42 RP-081074 107 109 03/12/08 RAN_42 RP-081074 110 03/12/08 RAN_42 RP-081074 111 03/12/08 RAN_42 RP-081074 112 03/12/08 RAN_42 RP-081074 113 03/12/08 03/12/08 04/03/09 04/03/09 04/03/09 04/03/09 04/03/09 04/03/09 04/03/09 04/03/09 04/03/09 04/03/09 04/03/09 04/03/09 04/03/09 27/05/09 15/09/09 RAN_42 RAN_42 RAN_43 RAN_43 RAN_43 RAN_43 RAN_43 RAN_43 RAN_43 RAN_43 RAN_43 RAN_43 RAN_43 RAN_43 RAN_43 RAN_44 RAN_45 15/09/09 RAN_45 RP-090888 114 108 115 118 121 123 124 125 126 127 128 129 130 132 134 135 137 138 01/12/09 01/12/09 01/12/09 01/12/09 16/03/10 RAN_46 RAN_46 RAN_46 RAN_46 RAN_47 16/03/10 RAN_47 RP-100209 16/03/10 07/12/10 RAN_47 RP-100210 RAN_50 RP-101320 RP-081074 RP-081074 RP-090234 RP-090234 RP-090234 RP-090234 RP-090234 RP-090234 RP-090234 RP-090234 RP-090234 RP-090234 RP-090234 RP-090234 RP-090234 RP-090527 RP-090888 RP-091168 RP-091172 RP-091177 RP-091257 RP-100209 142 139 140 141 144 145 146 148 Rev Subject/Comment bandwidth - General corrections to SRS 2 Correction to PCFICH specification Correction to Layer Mapping for Transmit Diversity with Four Antenna 1 Ports Correction of the mapping of cyclic shift filed in DCI format 0 to the dynamic cyclic shift offset - DRS collision handling Clarification to enable reuse of non-active PUCCH CQI RBs for PUSCH 1 PUSCH Mirror Hopping operation 1 Extended and normal cyclic prefix in DL and UL for LTE TDD 1 Alignment of PRACH configuration index for FS type 1 and type 2 1 Clarification for DRS Collision handling 1 Removing inverse modulo operation 1 Clarification on the use of preamble format 4 - Clarification of RNTI used in scrambling sequence 1 Clarifying PDCCH RE mapping - Correction of preamble format 4 timing 2 Corrections to SRS 2 Clarification of PDSCH Mapping to Resource Elements 1 Alignment with correct ASN1 parameter names - Correction to PUCCH format 1 mapping to physical resources - Correction to type-2 PUSCH hopping - Alignment of SRS configuration - Correction on UE behavior for PRACH 20ms periodicity 1 Clarification on DMRS sequence for PUSCH 1 Correction to PHICH resource mapping for TDD and to PHICH scrambling - Clarification of the transmit condition for UE specific reference signals 2 Introduction of LTE positioning 3 Editorial corrections to 36.211 1 Introduction of enhanced dual layer transmission 1 Removal of square brackets on positioning subframe periodicities - Clarification of the CP length of empty OFDM symbols in PRS subframes - Clarification of MBSFN subframe definition - Introduction of Rel-10 LTE-Advanced features in 36.211 ETSI Old New 8.4.0 8.4.0 8.5.0 8.5.0 8.4.0 8.5.0 8.4.0 8.5.0 8.4.0 8.5.0 8.4.0 8.5.0 8.4.0 8.4.0 8.5.0 8.5.0 8.5.0 8.5.0 8.5.0 8.5.0 8.5.0 8.5.0 8.5.0 8.5.0 8.5.0 8.5.0 8.5.0 8.6.0 8.7.0 8.5.0 8.5.0 8.6.0 8.6.0 8.6.0 8.6.0 8.6.0 8.6.0 8.6.0 8.6.0 8.6.0 8.6.0 8.6.0 8.6.0 8.6.0 8.7.0 8.8.0 8.7.0 8.8.0 8.8.0 8.9.0 8.9.0 8.9.0 9.0.0 8.9.0 9.0.0 9.0.0 9.0.0 9.1.0 9.0.0 9.1.0 9.0.0 9.1.0 9.1.0 10.0.0 3GPP TS 36.211 version 10.0.0 Release 10 104 History Document history V10.0.0 January 2011 Publication ETSI ETSI TS 136 211 V10.0.0 (2011-01) ...
View Full Document

This note was uploaded on 02/19/2012 for the course ECE 301 taught by Professor V."ragu"balakrishnan during the Spring '06 term at Purdue.

Ask a homework question - tutors are online