Lecture9_Induction - Ling 726: Mathematical Linguistics,...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Ling 726: Mathematical Linguistics, Lecture 9: Induction. V. Borschev and B. Partee, October 19, 2004 p. 1 1 Lecture 9: Proof by Induction. 8.1.1. Recursive definitions. .................................................................................................................................... 1 8.4. Peano’s axioms and Proof by Induction. .......................................................................................................... 2 Homework 10 . ......................................................................................................................................................... 4 APPENDIX: . ........................................................................................................................................................... 5 How to use Induction in a Proof. ........................................................................................................................ 5 Introduction. ................................................................................................................................................... 5 Example 1 . ..................................................................................................................................................... 5 Example 2 . ..................................................................................................................................................... 7 Conclusion . .................................................................................................................................................... 8 Feedback. ....................................................................................................................................................... 8 Read: PtMW, Chapter 8, Section 8.4 (192-198) and Section 8.5.7 (214-215). Attention: Induction is a mind-bender, more than it seems at first! 8.1.1. Recursive definitions. First let’s review recursive definitions from Section 8.1.1 of PtMW. There is in fact a close connection between being able to specify the membership of some set recursively and being able to use some version of the Principle of Mathematical Induction to prove that all members of the set have some property or other. Consider the set M of all even-length mirror-image strings on { a,b }. An even-length mirror- image string is a string that can be divided into two halves, with the right half a mirror-image reversal of the left half (a “palindrome”). Examples: abba, babbab, aaaa, bbabbabb . Non- examples: babb, aaab, bab . Recursive definition of M : (8-1) 1. aa M & bb M 2. ( x )( x M ( axa M & bxb M )) 3. Nothing is in M except by virtue of rules 1 and 2. (Line 1 is called the
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 02/22/2012 for the course LINGUIST 726 taught by Professor Partee during the Spring '07 term at UMass (Amherst).

Page1 / 8

Lecture9_Induction - Ling 726: Mathematical Linguistics,...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online