X-bar and R charts

X-bar and R charts - difference exists is then about 1 out...

Info iconThis preview shows pages 1–13. Sign up to view the full content.

View Full Document Right Arrow Icon
X-bar and R charts Example 3.1 from text
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Data on part thickness Thickness of parts recorded as amount by which  thickness exceeded 0.300 in. (everyone else has gone  metric but……. .)
Background image of page 2
Data structure Sample  Value 1    1 1    4 1    6 1    4 2    3 2    7 2    5 2    5
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Raw data plot, thickness vs  sample number
Background image of page 4
 Table 3.2 constants for X-bar  and R charts
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Rules for creating charts
Background image of page 6
Rules, etc.
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Limits are designed to …. Make sure that you do not react to Common cause. Indicate when you are reasonably sure that Special  Cause is present. If only Common Cause is present in the process,  then the chance of a false signal is about 1%, i.e. the  probability that the chart will falsely indicate the  presence of Special Cause is about 0.01. 
Background image of page 8
Similar to Hypothesis Testing In hypothesis testing we say there is a treatment  difference if p<alpha=0.05 (usually). The chance of falsely declaring a treatment 
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 12
Background image of page 13
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: difference exists is then about 1 out of 20. In Quality Control, we use 1 out of 100 to say that our process has more variation than just Common Cause. R-chart and Common Cause If the data in each subgroup was collected under homogeneous conditions, then the Ranges should reflect only Common Cause. The chart should not indicate the presence of Special Cause. R chart X-bar chart and Special Cause If the R-chart is in control, i.e., stable and predictable, then any shifts in the mean of the process come from Special Cause. If the X-bar chart indicates the process is out of control, i.e., that Special Cause is present. We then use a fishbone diagram or Cause and Effect Matrix to try to identify and remove the source of Special Cause. X-bar chart...
View Full Document

Page1 / 13

X-bar and R charts - difference exists is then about 1 out...

This preview shows document pages 1 - 13. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online