{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Expt_Caffeine_fromTea

Expt_Caffeine_fromTea - CHM!2201 Organic!Chemistry Lab I...

Info icon This preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
CHM 2201 Fall 2009 Department of Chemistry Organic Chemist ry Lab I Villanova University Page 1 of 4 Isolation of Caffeine from Tea Using Column Chromatography From Bell, Clark & Taber, pages 70 – 71 Carry out this experiment in your hood!! N N N N O O C H 3 CH 3 CH 3 Work in pairs and plan your work efficiently since Caffeine this lab can take 3 or more hours to complete. It is suggested that one person in the workgroup carry out part A (the tea extraction and adsorption of the tea extract onto silica gel) while the other person simultaneously starts with parts B (column preparation) and C (preparing the test tubes, obtaining the eluting solvents for the actual chromatography, and preparing the TLC plates which will be used for analysis of the TLC fractions). A. Extraction of Caffeine from Tea 1. Place 50 mL of the prepared tea solution in a 125 mL separatory funnel and add 20 mL of 5% aqueous HCl. (to help prevent emulsion formation) 2. Extract this mixture 4 times with 10 mL portions of methylene chloride (dichloromethane). IMPORTANT: methylene chloride is heavier than water. Do not shake the separatory funnel but vigorously SWIRL it (you may invert the separatory funnel to get better mixing during the swirling process) to help prevent the formation of an emulsion. REMEMBER: Vent the separatory funnel during the extractions to prevent pressure buildup! 3. Drain each of the above four methylene chloride extracts into a single dry 125 mL Erlenmeyer flask; make sure that there are not significant amounts of water drops in the methylene chloride extracts. If you see significant amounts of water in the combined methylene chloride extracts, place the combined extracts in a dry separatory funnel and carefully drain off the methylene chloride (being careful to keep the water in the separatory funnel) layer into another dry 125 mL Erlenmeyer flask. 4. Dry the combined methylene chloride extracts by adding 2-3 large spatula scoops of anhydrous magnesium sulfate and swirling the flask. After swirling the flask, the drying agent should be a loose and granular suspension (not sticking to the flask in chunks) in the methylene chloride; if not loose and granular, add another portion of magnesium sulfate, swirl and check to see if the newly added magnesium sulfate is loose and granular. Repeat the process until the newly added magnesium sulfate stays loose and granular. 5. To remove the magnesium sulfate from the combined methylene chloride extracts, filter the resulting mixture through a fluted filter paper placed in a funnel which goes into a dry 125 mL Erlenmeyer flask.
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern