92下複變期末考 電&a

92下複變期末考 電&a

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Complex Analysis - Final Examination 10:20AM to 12:20 PM, June 15, 2004 (1) (10 %) Evaluate ± C e z z 4 +5 z 3 dz with C : | z | =2. (2) (20 %) Find the Laurent series of f ( z )= 1 ( z - 1) 2 ( z - 3) (2a) (10 %) in 0 < | z - 1 | < 2 with center at z =1, (2b) (10 %) in 0 < | z - 3 | < 2 with center at z =3. (3) (20 %) Evaluate P . V . ² -∞ sin x x ( x 2 - 2 x +2) dx . (4) (20 %) Prove that P . V . ² 0 x a - 1 1 - x dx = π cot with 0 <a< 1. (5) (10 %) The functio w = e z/ 4 maps a region R in the z -plane to a region R ± in the w -plane.
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Find R ± if R = { z = x + iy | ≤ y ≤ π } . (6) (20 %) Apply Schwarz-Christoffel formula, f ± ( z ) = A ( z-x 1 ) ( α 1-1) ( z-x 2 ) ( α 2-1) , to ±nd the function w = f ( z ) such that D = { z = x + iy | y ≥ } is mapped to D ± = { w = u + iv | u ≥ , | v | ≤ 1 } , under the conditions that f (-1) =-i and f (1) = i . 1...
View Full Document

This note was uploaded on 02/21/2012 for the course EE 101 taught by Professor 張捷力 during the Spring '07 term at National Taiwan University.

Ask a homework question - tutors are online