BoltzDis

BoltzDis - Boltzman Distribution and the Most Probable...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Boltzman Distribution and the Most Probable Distribution ε ε ε ε ε ε oo oooooo oo o 3 5 4 2 1 n =2 n =6 n =1 n =2 n =0 1 2 3 4 5 N = i n i ε = i n i E i sum over all states, i ε ε ε ε ε ε ooooo ooo oo o 3 5 4 2 1 n =5 n =3 n =2 n =1 n =0 1 2 3 4 5 U-U(0) = n i E i n i for most probable distribution W = N ! n 1 ! n 2 ! n 3 !... ln W = ln N ! – ln n i ! d(lnW) = lnW n i dn i Constraints: d N = dn 1 + dn 2 + dn 3 + . .. = dn i = 0 d ε = E 1 dn 1 + E 2 dn 2 + = 0 0 = lnW n i dn i + α dn i β E i dn i α and β undetermined multipliers 0 = lnW n i + α β E i dn i now n i 's are independent! lnW n i + α β E i = 0 Sterling's Formula: ln x! = x ln x - x ln W = N ln N – N (n j ln n j - n j ) n i = N so ln W = N ln N n j ln n j lnW n i = – n i ln n i n i + ln n i = –
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 2

BoltzDis - Boltzman Distribution and the Most Probable...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online