{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Midterm2Solutions

# Midterm2Solutions - ACTSC 431 831 Midterm 2 FALL 2010 Name...

This preview shows pages 1–6. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ACTSC 431 / 831 Midterm # 2 FALL 2010 Name: ID 5 . The random variable 81 has a compound Poisson distribution With Poisson parameter A1 = 4, and secondaryvdistribution given by f0 = 0.25, f1 = 0.35, and f2 = 0.40. The random variable 82 has a compound Poisson distribution with Poisson parameter A2 = 3, and secondary distribution given by f1 = 0.20, f2 = 0.50 and f3 = 0.30. Also, 5'1 and 5'2 are independent, and S = 81 + 82. (a) Express the distribution of S in compound Poisson form by identifying the Poisson parameter /\ and secondary distribution. .__ {’ _\ g , \L 1 km i: if (> ‘ 1V3, Didi/3M ) £3) \_ ._ r “ , > _ C 2% {INK/i 1/; ﬂ 1 \ ‘1} i f rt“\ } i l / ) P i ' M f a) f i 7 , /-\\ i/i 4/ g :7 V, . ._ -, _ ”T- s 1 _, 1 ‘ ) ‘r ‘ ‘ ,9 ‘ z" ’ i '. ‘ {I i . at: 2 , f _,‘ L _ _.,,,__ N.” x f " " , q f /} ( -p [i . \ - “ i, I i ‘91 X P ‘ (i) i / J i ( 1 / . ﬂ // i f f ‘ f ) \) W ’ ‘} If I ( «. a A I i 5/ ﬂ ,7 0 ‘E 3 ’ 5 (13) Use the compound Poisson representation and the compound Poisson recursive formula to compute Pr(S = 3:) for JD 2 0, 1, 2, and 3. Kw]; 1 W / , f T.\—‘»”\ 1 1/3} ; f 1f, *5 O 1/ / .r ,. i Q L” ® ":76~ LJ’ZJZ/Zq” fgi { \.\ Z g 17' ‘ " w‘ V ﬂ \ 1 ‘ r 4‘3 r1 3 ’ ’ / 1 ‘ " . to ‘ 1 , k ,‘ \5’ '1 Z.) k i‘\ r i 1 1 x x \ o I 1 1 K x 1 1 (W .4 k d * J n 1 l f \ 7 / I ‘ 4) t\ { x) i" I r / I; 1 r 7 w 1, an 1 1 1 A , N (d V \ K \ I K {“(’ L: 1,7 _ A] 41 . J ,. ,,. . : f \ / , few-m Ks. v “2‘ ,’ ’ \r I _ 7 1 1’, m I (A 1 ~ / 1 ~- ” 1 ' c 1 \ 1’ ~ \ “"’ - ' / .e) k f , _, 1 / / “ 2. Suppose that N has the mixed Poisson distribution 009n€~6 pr A n! WW Where 19— (9(6) : —e*T*, 6 > A. F' o (a) Find the lllgf ffo et9b((9)d9. i V .' F ,- ‘1 _ i x, 2‘ 1/ y W; ( j 3/ ' W‘s . F } x, f / ‘y/ w ,1 a ‘{5 X; f f‘k; ( . 0 / (if; C‘ i // J J > k (‘1’ if f/ j ‘ H/ R if ‘ J ‘. 3 (D xx ‘ f"y i:\ ,V 1 i ( r q] /}\\ E . z 1' 3 r g r ( « i A i x J , \, , 1‘ ,., ,J / \, 2 t , ;’ xii/XV) " l ‘ f i K 5 (b) Prove that P(z) 2 SE pnzn : eM5—1){1 — 5(2 — 1)}4. n:O type of distribution has this pgf. 5 (C) Find the mean E(N) and variance Var(N) . w : _j / 3 , ,/ ‘ * ‘ y (“K x‘ ‘ 5' > r"! ,1 /ﬁ L .«' r, f ‘1 :‘ \\ ANN; ' /',“I x’ta“ K \ Explain in words What ft , a \ (d) Show that the pgf may be expressed as 13(3) : €u{Q(Z)—1} ' l ( l / , f n I ‘2 7 ’ A L ¥ \m‘ G) x _ I ll / l \ / r {a Q) /I <3 7 ,‘ 7 x t, i f ’ C‘ ("(7, ~ l i _ ) "r F M \ k i / I 1 f 1 ,2) ( a / / L q) l I l L\ ‘ l r it _ a G W x l (1‘4 K (e) If the number of losses has the pgf in b), identify the distribution of the number of payments, if the probability that a loss results in a payment is v. (Hint: ﬁnd the pgf.) 7 : r W A: ‘-\, {if l7) 1 1/5/ ‘ 27/ ( l l/ x \_ If C Y e ‘/ 4 ‘y \ /( \ l . \ , V , m , i i ‘ Z r 5 ,\ ,Vﬂy’ﬂt'ﬁlﬁrl} \‘ is 'J 3. Suppose that Pr(N=n)=(1—p)pn_1; 7121,23,... where 0 < p < 1. Also, let {X1,X2, . . } be an independent and identically distributed sequence of ran— dom variables (also independent of N) with common probability function Pr(X¢=:c)=(l—9)6\$; a:=0,1,2,... withO < 6 <1. Let S: 81 +X2+...XN. Use the pgf to show that Pr(S=s)=(1—61)f; s=0,1,2,... where 61 = 9/{9 + (l —p) (1 —- 9)} , I; \‘ \ ,’ W , . \ ,3 \_ or” Jr? , ”R » " “~ - if" H /‘ 1- \X ' 'lf ii i/ : ; “wwm jw-“M' \ E/ / ’_ _, _ f ,_ \\ I, 3;, .. . w _,,' i 7/ and ‘- r ”V“ ’ i , LL . \ , l“ l” I" x ', ., = s ~ . . i 17/ . i I . r / Y / a, ( l \ .4‘ ‘ ’ ' ‘ ( CD M , , 4 Q W / _ m / x \ Q ’ /n/ l V, f r“ J H k R ,",/' -n ,1“ ,1" \ n x 9 r, .. R i ‘ 1‘ “ ‘ ‘ i ‘* 4-, “1’9: )1 s'\w)\c‘mf 57‘ ...
View Full Document

{[ snackBarMessage ]}