notes_31_Ult_str_stf_

notes_31_Ult_str_stf_ - Section 14.2 Ultimate Strength of...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Section 14.2 Ultimate Strength of Stiffened Panels three failure types compression in flange of stiffener (negative bending moment) Mode I compression in plate (positive bending moment) Mode II tension in flange of stiffener (high positive moment) Mode III b HSF γ C := 1.5 σ C := input b p := input σ ax := σ C t p j = 5, PS 6, stiffener #6 from catalog BSF := 3.94 SDEPTH := 7.89 TSF := 0.205 TSW := .17SCG := 5.35 a plate a := 8 12 b := 23.844 t := .375 N := 1 L := a material υ := 0.3 E := 29.6 10 6 D := Et 3 allowing for different yield stresses 12 ( 1 − υ 2 ) plate stiffener general parameters: σ Yp := 47 10 3 σ Ys := 47 10 3 HSW := SDEPTH TSF A w := (SDEPTH TSF) TSW A f := BSF TSF A s := A w + A f HSW = 7.685 A w = 1.306 A f = 0.808 A s = 2.114 TSF t A s ⋅σ Ys + σ Yp A p d := SDEPTH + B := (N + 1) b A p := bt A := A s + A p σ Y_bar := A 2 2 d = 7.975 B = 47.688 A p = 8.942 A = 11.056 σ Y_bar = 47000 1 notes_31_Ult_str_stf_panels.mcd
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
For later use and to set the scale on plots, calculate M p , plastic moment of section if Ap>Aw+Af; i.e. Ap>At/2 => g is in plate g := A p A w A f g = 0.143 2b centroid of upper half centroid of lower half bg 2 + A w HSW + g + A f (g) + HSW + TSF y 2 := t g y 2 = 0.116 y 1 := 2 2  2 2 A y 1 = 2.145 2 plastic section modulus, if Ap>At/2 Z P1 := A ⋅( y 1 + y 2 ) Z P1 = 12.498 TSF = 0.205 2 ______________________________________________________ if Ap<Aw+Af; i.e. Ap<At/2 => g is is web g := A f + A w A p g = − 20.08 2 TSW centroid of upper half centroid of lower half A f HSW g + TSF + TSW (HSW g) 2 A p g + 2 t + TSW g 2 2 2 2 y 1 := y 2 := A f + A w g TSW A p + g TSW y 1 = 15.926 y 2 = − 25.977 plastic section modulus, if Ap<At/2 Z P2 := A y 1 + y 2 ) Z P2 = − 55.562 2 Z P := if A p > A , Z P1 , Z P2 Z P = 12.498 2 M P := σ Y_bar Z P M P = 587397 2 notes_31_Ult_str_stf_panels.mcd
Background image of page 2
a. Compression failure of stiffener (flange): Mode I (Point E figure 14.2) and curve - PCSF - Panel Collapse Stiffener Flexure. (Mode I). geometry of panel Combination of plate and stiffeners (from p287, equation 8.3.6 in text): A A w A w A w A w + A f A p + A p + A p d C 1 := 3 4 I := A () 2 C 1 y f := d 2 A y p := d1 2 A A 2 C 1 = 0.095 I = 66.789
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 02/24/2012 for the course MECHANICAL 2.082 taught by Professor Davidburke during the Spring '03 term at MIT.

Page1 / 11

notes_31_Ult_str_stf_ - Section 14.2 Ultimate Strength of...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online