Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Boston, MA, 1985. MR777682 (86f:58018) 8. W. Barth and C. Peters, Automorphisms of Enriques surfaces, Invent. Math. 73 (1983), 383–411. MR718937 (85g:14052) 9. W. Barth, K. Hulek, C. Peters, and A. Van de Ven, Compact complex surfaces, Second edition. Ergeb. der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin, 2004. MR2030225 (2004m:14070) 10. E. Bedford and K. Kim, Dynamics of rational surface automorphisms: linear fractional recurrences, math.DS/0611297. 11. I. Bernstein and O. Shvarzman, Chevalley’s theorem for complex crystallographic Coxeter groups (Russian), Funktsional. Anal. i Prilozhen. 12 (1978), no. 4, 79–80. MR515632 (80d:32007) 12. R. Borcherds, Automorphism groups of Lorentzian lattices, J. Algebra 111 (1987), 133–153. MR913200 (89b:20018) 13. R. Borcherds, Coxeter groups, Lorentzian lattices, and K 3 surfaces, Internat. Math. Res. Notices 1998, 19, 1011–1031. MR1654763 (2000a:20088) 14. N. Bourbaki, Lie groups and Lie algebras, Chapters 4–6, Translated from the 1968 French original, Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 2002. MR1890629 (2003a:17001) 15. E. Brieskorn, Die Aufl¨sung der rationalen Singularit¨en holomorpher Abbildungen, Math. o t Ann. 178 (1968), 255–270. MR0233819 (38:2140) 16. E. Brieskorn, Singular elements of semi-simple algebraic groups, Actes du Congr`s Internae tional des Math´maticiens (Nice, 1970), Tome 2, pp. 279–284. Gauthier-Villars, Paris, 1971. e MR0437798 (55:10720) 17. E. Brieskorn, Die Milnorgitter der exzeptionellen unimodularen Singularit¨ten, Bonner a Mathematische Schriften [Bonn Mathematical Publications], 150. Universit¨t Bonn, Mathea matisches Institut, Bonn, 1983. MR733785 (85k:32014) 18. V. Bugaenko, Arithmetic crystallographic groups generated by reflections, and reflective hyperbolic lattices, in “Lie groups, their discrete subgroups, and invariant theory”, pp. 33–55, Adv. Soviet Math., 8, Amer. Math. Soc., Providence, RI, 1992. MR1155663 (93g:20094) 19. C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778–782. MR0072877 (17:345d) 20. A. Coble, The ten nodes of the rational sextic and of the Cayley symmetroid, Amer J. Math. 41 (1919), 243–265. MR1506391 21. A. Coble, Algebraic geometry and theta functions (reprint of the 1929 edition), A. M. S. Coll. Publ., v. 10. A. M. S., Providence, RI, 1982. MR733252 (84m:14001) 22. J. Conway, The automorphism group of the 26-dimensional even unimodular Lorentzian lattice, J. Algebra 80 (1983), 159–163. MR690711 (85k:11030) 23. J. H. Conway and N.J.A. Sloane, Sphere packings, lattices, and groups, Grundlehren der Mathematischen Wissenschaften, 290. Springer-Verlag, New York, 1999. MR1662447 (2000b:11077) 24. F. Cossec and I. Dolgachev, On automorphisms of nodal Enriques surfaces, Bull. Amer. Math. Soc. (N.S.) 12 (1985), 247–249. MR776478 (86f:14028) 25. W. Couwenberg, G. Heckman, and E. Looijenga, Geometric structures on the complement ´...
View Full Document

This note was uploaded on 02/24/2012 for the course MATH 285 taught by Professor Igordolgachev during the Fall '04 term at University of Michigan-Dearborn.

Ask a homework question - tutors are online