CompE270_101_Exam1Solutions

# CompE270_101_Exam1Solutions - €30 CompE 2'70 Digital...

This preview shows pages 1–5. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: €30 CompE 2'70 Digital Systems 810 NAME: S0 to ‘ékmg Exam #1 - use additional sheets if needed -- SHOW WORK for partial credit 1) Binary notation has a range of valid values which depends on the number of bits and format. What is the range of valid values (in decimal notation) for: 5 pts. 8 bi ts , unsigned 4 bi ts , 2 ’ s complement 0 (most 23' ,8 from: (base 10) negative) from: 'H ’ (base 10) / ‘5 I -; + to: { (base 10) (to most to: 2"”. 7 (base 10) 25 # II positive) 2) Subtract the 8—bit UNSIGNED values (show results as 8 bits: binary, hex, and decimal notation). Indicate if the result is valid 10 pts FF hex I 1t l \ lll‘ binary = Dec — 10 hex 00010600 binary= Dec show results in I = I: I l O {l 1 1‘ binary = Dec hexadecimal: t F Result valid? 2243 decimal: Borrow Out: ‘0 Overflow: MD 3) Add the 8—bit Mp values (show results as 8 bits: binary, hex, and decimal notation} . Indicate if the result is valid 10 pts 1 t i : FFhex “\l\\ \\\K binary=ﬁl Dec + 10 hex + DOOL 0000 binary: +Ho Dec show results in = 00 O o l \ K \ binary = ‘l’ Dec hexadecimal: (A of: Result valid? 225 decimal: [ i 00‘ 1‘ 01 o l r/ICIZLDLl, Carry Out: C = Overflow: x 00 [L x 00 t K 4) Multiply 310 times 510 in unsigned binary: O [-3 \ \ 59“ 111:1, x\‘\. .—-—-‘_—'_'f- f—n—F Convert: {5 pts ea) 4 S- 5) 4 bit 2's complement 10.83, to decimal: (I? N, {oe‘x _.L 7 a?) 44:5?ch L/a/“T‘rl-Tbﬁ 6) Decimal —1.25 to 2’s complement binary: KO: 1 { Al/ ’ c 1 l U _ .e I Z +—i¥4_ r + [4' slaw: 10 10H *4 [0.11 7) Unsigned hex 100C to decimal: ﬂog l>c{¢3’+c>+ *2 + D, 4D'Mei'l2, 8) Decimal 127 to unsigned hex: 1115128,; In? song! : 7e; Exam1.doc 1 NAME: alugkd YILS CompE 270 Exam 1 9) For the following truth table: 10 pts List the minterms: 21M } + Ed: Dﬁr } List the maxterms: I'IM( 2);; g}? ) I Hdtoﬁldr ) Include the don’t care terms in the lists above. and then Fill the Label the columns and rows, minterms into the K—map: a 6*- an 4- w- (‘3 F ‘3 Write the equations showing *ALL* terms lb! 5: Minterms(SOP}: y = Q C— 4 Q C. Maxterms(POS}: y = (CHH4Q(Ds+b‘+qlxat\tbl+cxcf+ EH C} Group and circle the ls in the K—map: Write the singlified SOP form of the eqn: y = ! I With the simplified SOP equation, what will the l y output be for the don’t care conditions: 0,4 ? y(O) Draw the logic schematic for the simplified equation: 10) Is this corregtzﬂﬁg:£:g;:iij 5 pts //,/ngh the gates a AH Ef:::_ C 0:, M04 jaw 9:60:01 Ago / 6”“0 H f” C Exam1.doc CompE 270 NAME: , SﬂWTgOMS Exam 1 11) Fill in the missing term numbers and the row and column values for the 3 and 4 input K—map: 5 pts 12} Write the SOP/PCS equations corresponding to the schematic shown: 10 pts SOP form: I If I I y = q‘b’c +61 bc+qbc + aim; List all the minterms: Sm( I_J:3/ 4J 5/ 2 POS form: y = (Q1—brch-t—6-Fécci1‘ bI+C3<CLJ+6 1- (1:3 H Y List all the maxterms and fill in Kemap: y = HM( C>}Z«EL{Yi) Min SOP equation form: Gates: I f y=0kC+O~b (L C ,,.~# Ok b—bo Min POS equation form: Gates: I r y=(q+o\(°‘+b) 2 y a.—‘ \g Exam1.doc b 3 M7 CompE 270 Exam 1 10 pts +0010" 0 0 l l 0 l 0 1 O l l l BCD BCD Resultol‘tD 0016 BCD l4} True/False 2 pts each T/F Equation E x+0=/e’>< _’T: x+x=x r x+xv=,X/\ "1—, X+Y=Y+X E (XYZ)={X’ + Y’ + Z')’ L +LL 11; T/ I11 I I E I I 15) Convert the following binary values to an ASCII character string, ASCII table provided. 10 pts Binary: 10 *ll 11 ll 11 11 11 Cl 0011 111. 0010 0010 0101 0011 0100 000: Hex: 4-3 (of; 31%. 5:53 74- 2_l The symbols are C O Y‘ 'r a C {- Exanﬂ.doc ( using the hex— NAME: 13) Calculate the following using 4—bit BCD sum, and Show the decimal equivalents: Decimal Decimal Decimal Equation = 0 =x XOX’=}(”/C> Z) Z} 55 5? 53 59 . 5A SB 50 50 '5E 5F 60 '61 62 63 64 65 66 a? 63 59 BA BB 60 an 5E 6F 70 N 72 73 74 75 76 7? 78 79 7A ?B 70 TD 7E 7F X+YZ= (X+Y}{X- (X’Y’Z’J’ = (X + Y — HEX-A8011 mama no NUL 213 + 01 80H 20 ' 02 STX 2D — 03 ETX 2E . 04 EDT 2F 1 05 ENG 30 o 05 ACK 31 1 07 BEL 32 2 ca BS ‘ ‘ 33 3 09 HT 34 4 04 LP 35 5 as VT. 35 5 oc FF 3? 7 00 CF! 38 a GE so 39 9 OF SI 3A : 10 DLE as ; 11 001 (X-ON) 30 < 12 002 (TAPE) 3:: = 13 003 (X—OFF} 3E > 14 004 ﬁne;- 3F ? 15 NAK 40 a 16 SYN 41 A 17 era 42 B 18 CAN 43 c 19 EM 44 D 14 sue 45 E 18 E80 46 F 10 F8 47 G 10 GS 48 H 15 RS 49 | 1F us 414 J 20 SP 48 K 21 1 40 L 22 " 40 M 23 1% 4E N 24 a; 4F 0 25 0/9 50 P 25 a 51 o 2? I 52 R 2a ( 53 S 29 3 54 - T 24 - 55 u -. Ufu—-~Nt<x5<c"mnnuoza—wh'm-‘J‘mﬁma1oam ,l >L—4/P—1N-<x€< EL CompE 270 NAME Exam 1 SEQLU 3. 16) Full adder: (use additional sheets if necassary) 50 Points total, allocated: 5 pts a) Draw the block diagram for a full adder {just inputs and outputs} 5 b} Fill in the truth table showing inputsIr sum and carry outputs 5 c) Draw K—maps for sum and carry out 10 d} Write the minimized SOP equations for the sum and carry outputs 10 e) Draw the schematic from the minimized SOP equation 5 f) Draw the schematic using 2 input XOR gates where appropriate 10 g) Draw a Zebit adder/subtractor made from full adders + gates 05 F. n. b) 0* Coo-r \$3 Cod-r3 L‘é‘ﬁ‘eSm SoM‘. EjD’W-v 60m Cliu ‘ﬂ'dﬂaﬂﬂrﬂuﬂ 756?) Emmtogug 07990 5 ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 5

CompE270_101_Exam1Solutions - €30 CompE 2'70 Digital...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online