1349_notes - MANEUVERING AND CONTROL OF MARINE VEHICLES...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MANEUVERING AND CONTROL OF MARINE VEHICLES Michael S. Triantafyllou Franz S. Hover Department of Ocean Engineering Massachusetts Institute of Technology Cambridge, Massachusetts USA Maneuvering and Control of Marine Vehicles Latest Revision: November 5, 2003 ◦ Michael S. Triantafyllou and Franz S. Hover c Contents 1 KINEMATICS OF MOVING FRAMES 1 1.1 Rotation of Reference Frames . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Differential Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Rate of Change of Euler Angles . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Dead Reckoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 VESSEL INERTIAL DYNAMICS 5 2.1 Momentum of a Particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Linear Momentum in a Moving Frame . . . . . . . . . . . . . . . . . . . . . 6 2.3 Example: Mass on a String . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.1 Moving Frame Affixed to Mass . . . . . . . . . . . . . . . . . . . . . 8 2.3.2 Rotating Frame Attached to Pivot Point . . . . . . . . . . . . . . . . 8 2.3.3 Stationary Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.5 Example: Spinning Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.5.1 x-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.5.2 y-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.5.3 z-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.6 Parallel Axis Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.7 Basis for Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 NONLINEAR COEFFICIENTS IN DETAIL 13 3.1 Helpful Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Nonlinear Equations in the Horizontal Plane . . . . . . . . . . . . . . . . . . 15 3.2.1 Fluid Force X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.2 Fluid Force Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.3 Fluid Moment N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4 VESSEL DYNAMICS: LINEAR CASE 17 4.1 Surface Vessel Linear Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 Stability of the Sway/Yaw System . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3 Basic Rudder Action in the Sway/Yaw Model . . . . . . . . . . . . . . . . . 20 4.3.1 Adding Yaw Damping through Feedback . . . . . . . . . . . . . . . . 21 4.3.2 Heading Control in the Sway/Yaw Model . . . . . . . . . . . . . . . . 21 4.4 Response of the Vessel to Step Rudder Input . . . . . . . . . . . . . . . . . . 22 4.4.1 Phase 1: Accelerations Dominate . . . . . . . . . . . . . . . . . . . . 22 4.4.2 Phase 3: Steady State . . . . . . . . . . . . . . . . . . . . . . . . . .....
View Full Document

This note was uploaded on 02/27/2012 for the course MECHANICAL 2.154 taught by Professor Michaeltriantafyllou during the Fall '04 term at MIT.

Page1 / 152

1349_notes - MANEUVERING AND CONTROL OF MARINE VEHICLES...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online