lect_4 - Introduction to Numerical Analysis for Engineers...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Introduction to Numerical Analysis for Engineers Roots of Non-linear Equations Herons formula Stop criteria General method Convergence Examples Newton-Raphsons Method Convergence Speed Examples Secant Method Convergence and efficiency Examples Multiple roots Bisection Lecture 7 Roots of Nonlinear Equations Example Square root Herons Principle Guess root Mean is better guess Iteration Formula ( )/2 ( )/2 a=2; n=6; heron.m g=2; % Number of Digits dig=5; sq(1)=g; for i=2:n sq(i)= 0.5*radd(sq(i-1),a/sq(i-1),dig); end ' i value ' [ [1:n]' sq'] hold off plot([0 n],[sqrt(a) sqrt(a)],'b') hold on plot(sq,'r') plot(a./sq,'r-.') plot((sq-sqrt(a))/sqrt(a),'g') grid on i value 1.0000 2.0000 2.0000 1.5000 3.0000 1.4167 4.0000 1.4143 5.0000 1.4143 6.0000 1.4143 Lecture 7 Roots of Nonlinear Equations General Method Example: Cube root % f(x) = x^3 - a = 0 % g(x) = x + C*(x^3 - a) cube.m a=2; Non-linear Equation n=10; g=1.0; C=-0.1; sq(1)=g; for i=2:n sq(i)= sq(i-1) + C*(sq(i-1)^3 -a); end hold off plot([0 n],[a^(1./3.) a^(1/3.)],'b') hold on plot(sq,'r') plot( (sq-a^(1./3.))/(a^(1./3.)),'g') grid on Goal: Converging series Rewrite Problem Example Iteration Lecture 7 Roots of Nonlinear Equations...
View Full Document

Page1 / 17

lect_4 - Introduction to Numerical Analysis for Engineers...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online