This preview shows pages 1–3. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: Unit Two Notes—The Derivative 2.1 CONTINUITY D A function f is continuous at x = c if the following three conditions are satisfied: 1. f(c) is defined 2. ) ( lim x f c x → exists 3. ) ( ) ( lim c f x f c x = → D Continuity on a closed interval A function is continuous on a closed interval [a, b] if the following conditions are met: 1. f is continuous on the open interval (a, b) 2. f is continuous from the right at x = a, and 3. f is continuous from the left at x = b D Types of discontinuities—1) Removable 2) NonRemovable Ex 1 (removable discontinuity): ( 29 2 2 2 = x x x x f Ex 2 (nonremovable discontinuity): ( 29 2 2 2 + = x x x x f Ex 3: Determine if f(x) is continuous on [2, 4]: ( 29 ≥ + < = 3 , 8 3 , 4 2 x x x x x f Ex 4: Determine all values x = a where f(x) is discontinuous. Classify what types of discontinuities exist, if any. ( 29 ( 29 ( 29 6 3 1 2 2 + + = x x x x f 2.2 Amount of Change, Percentage Change, and Average Rate of Change (Over an Interval) Describing Change is the underlying theme of the first four units. Three ways that we may consider describing numeric change that is important for Calculus can be done in the following ways: Type of Change How Change is Calculuated Units of Change Change output units Percentage Change percentage % Average Rate of Change units of output (A.R.O.C.) per unit input Ex 1: The number of Facebook users in the Eastern US grew from 0.9 million in 2007 to 12.0 million in 2010....
View
Full
Document
This note was uploaded on 02/28/2012 for the course MAT MAT 212 taught by Professor Michaeldereck during the Spring '12 term at Mesa CC.
 Spring '12
 MICHAELDERECK

Click to edit the document details