9 Integral-part2

9 Integral-part2 - Chapter 3 (Integral Calculus) 3.5 (2 x +...

Info iconThis preview shows pages 1–15. Sign up to view the full content.

View Full Document Right Arrow Icon
Chapter 3 积积 (Integral Calculus) 3.5 积积积积积 积积积积积积积积积 积积积积积积积积积 积积积积积积积 积积积积积积积积积积积
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
积积 积积积积积积 20 (2 1) d x x + 2 1, (2 1) 2 , u x du d x dx = + = + = 令令令 20 (2 1) d x x + 21 1 (2 1) 42 x C = + + 20 1 d 2 u u = C x + + = 21 ) 1 2 ( 21 1 2 1 20 1 1 1 2 20 1 u C + = × + + 20 u du
Background image of page 2
. 令令令 令令令令令令令令令令 dx x + 2008 ) 1 2 ( ) 1 2 ( ) 1 2 ( 2 1 令令 . 2008 + + = x d x . ) 1 2 ( 4018 1 2009 1 2 1 2 1 2009 2009 2008 c x c u du u + + = + = = du u 2008
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
dx x x p 1 . 151 3 2 + du u x d x = + + = 2 1 3 2 1 3 3 1 ) 1 ( ) 1 ( 3 1 C x C u + + = + = 2 3 3 2 3 ) 1 ( 9 2 ) 3 2 ( 3 1
Background image of page 4
dx x x 2 ) (ln . 1 , ln 1 . x d dx x = 令令令令 c x c u du u + = + = = 3 3 2 ) (ln 3 1 3 令令 + 2 2 . 6 153 a x dx p ) ( , ) ( 1 1 . 2 2 a x ad dx a x dx a = + = 令令令令 令令 c a x a c u a u du a + = + = + = arctan 1 arctan 1 1 1 2 令令 C x dx x + = + arctan 2 1 1
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
) 0 ( 1 . 7 153 2 2 - a dx x a p ) ( , ) ( 1 1 2 a x ad dx dx a x a = - = 令令令令 令令 c a x c u du u + = + = - = arcsin arcsin 1 1 2 令令 C x dx x + = - arcsin 2 1 1
Background image of page 6
1 153 5 d (3ln 1) P x x x - 1 1 d(3ln 1) 3 3ln 1 x x = - - 令令 1 ln | 3ln 1| 3 x C = - +
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
1 154 8. d 1 x P x e + 1 [1 ]d d(1 ) 1 1 x x x x e x x e e e = - = - + + + ∫ ∫ ln(1 ) x x e C = - + + 1 d d(1 ) 1 1 x x x x e x e e e - - - - = = - + + + ∫ ∫ 令令令令 ln(1 ) x e C - = - + +
Background image of page 8
- + = dx x xf c x dx x f p ) 1 ( , ) ( . 9 . 154 2 2 - - - = - ) 1 ( ) 1 ( 2 1 ) 1 ( . 2 2 2 x d x f dx x xf 令令 c x + - - = 2 2 ) 1 ( 2 1 x c x x f 2 ) ( ) ( . ' 2 = + = 令令 c x x dx x x + - = - = 4 2 2 2 1 ) 1 ( 2 令令
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
积积积积积 (p155) x d xdx x d xdx de k dx e x d dx x x d dx x x d dx x dx xdx a b ax d a dx kx kx sin cos , cos sin . 7 1 . 6 | | ln 1 . 5 2 1 . 4 1 1 . 3 2 1 . 2 ) 0 )( ( 1 . 1 2 2 = - = = = = - = = + =
Background image of page 10
- 2 1 3 ) 2 3 ( 1 . 13 155 dx x p 2 1 2 2 1 3 ) 2 3 ( 1 ) 2 1 )( 2 1 ( ) 2 3 ( ) 2 3 ( 2 1 . x x x d - - - = - - - = 令令 0 ) 2 3 ( 1 4 1 2 1 2 = - = x dx x x p e e 4 4 / 1 ln . 14 156令 4 4 / 1 4 4 / 1 2 / 3 ) (ln 3 2 ln ln e e e e x x d x = = 4 21 ] 8 1 8 [ 3 2 = - = 1 1 2 1 1 1 1 2 dx x x - - = - = -
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
P201,17. 积积积积积 8 . 172 ) 6 ( , 3 4 ) ( ' = + = C x x x C 积 : 积积积积积 C ( x ) dx x x x C + = 3 4 ) ( . dx x x + - + = 3 ) 3 3 ( 4 ) 3 ( ] ) 3 ( 3 ) 3 [( 4 2 1 2 / 3 + + - + = x d x x 5 / 2 3/ 2 2 4[ ( 3) 2( 3) ] 5 x x C = + - + + 2 / 3 2 / 5 ) 3 ( 8 ) 3 ( 5 8 ) ( 0 8 . 172 ) 6 ( + - + = = = x x x C C C
Background image of page 12
; | ) ( 1 | ln ) ( 1 ) ( ' ) ( ; 1 1 1 ln ) ( . ________ 3 c x f dx x f x f B c x x d x dx x x A + + = + + = = 令令令令令令令令 . | ) ( 1 | ln 2 1 ) ( 1 ) ( ' ) ( ; ) ( arctan ) ( 1 ) ( ' ) ( 2 2 2 c x f dx x f x f D c x f dx x f x f C + + = + + = + C B ,
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
-
Background image of page 14
Image of page 15
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 02/28/2012 for the course ECO 211 taught by Professor Arafat during the Summer '08 term at Anne Arundel CC.

Page1 / 58

9 Integral-part2 - Chapter 3 (Integral Calculus) 3.5 (2 x +...

This preview shows document pages 1 - 15. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online