Lecture_08_09

Lecture_08_09 - Professor Ruslan Goyenko...

Info iconThis preview shows pages 1–11. Sign up to view the full content.

View Full Document Right Arrow Icon
Arbitrage Pricing Theory cont’d Professor Ruslan Goyenko
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Recall: Single Index Model i f M i i f i e ) r r ( ) r r ( + - β + α = - Assume factor is market excess return α i = stock’s expected return if market’s excess return is zero  (we showed alpha should equal zero for fairly priced assets) β i(rM-ri) = the component of return due to market movements ei = the component of return due to unexpected firm-specific events  (mean  zero, uncorrelated across firms, and uncorrelated to market  return)
Background image of page 2
Single-index model: decomposing  risk σ i2 =  total variance β i2  σ m2   systematic variance σ 2(e i )   unsystematic variance ) e ( i 2 2 M 2 i 2 i σ + σ β = σ Ri  =  α i + ßiRm + ei 2 2 2 2 i M i square R σ β ρ = - = i f M i i f i e ) r r ( ) r r ( + - β + α = -
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Example 1 Consider the two  excess return  index model regressions Which stock has higher firm specific risk? RA  =  .01 + 1.2Rm , R-square = .576,  σ (e i ) = 10.3%    RB  = - .02 + .8Rm , R-square = .436,  σ (e i ) = 9.1%   
Background image of page 4
Multifactor Models: Recap Both the ICAPM and multifactor APT imply that  the expected (required)  excess return  on an asset  (or diversified portfolio in the case of the APT) is a  linear function of factor betas E(ri) - rf =  β i,1RP1 +  β i,2RP2 + … Where RPk is the  risk premium  on factor k: the  expected excess return of a portfolio that has a beta of  1 on factor k, and a beta of 0 on all other factors
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Suppose growth in industrial production IP and the  inflation rate IR, drive returns E[IP] = 3%, E[IR] = 5% For stock A:  β A,IP = 1,  β A,IR = 0.5 E[rA] = 12% Suppose IP growth turns out to be 5%, and  inflation growth 8% What is your revised estimate of  E[rA] ? Example 2
Background image of page 6
Suppose there are 2 independent risk factors F1  and F2 The risk free rate is 6% Consider 2 well diversified portfolios A and B with E[rA] = 31%,    β A,1 = 1.5,  β A,2 = 2 E[rB] = 27%,  β B,1 = 2.2,  β B,2 = -0.2 What is the expected return beta relationship in  this economy? Example 3
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Consider a 1-factor economy where well-diversified  portfolios A, B and C have expected returns and  betas as follows: E[rA] = 12%, β A = 1.2 E[rB] = 8%, β B = 0.6 E[rC] = 6%, β C = 0 Is there an arbitrage opportunity? What is it? Example 4
Background image of page 8
9 FINE441 –Investment management Portfolio Performance Evaluation Portfolio Performance Evaluation Ruslan Goyenko Faculty of Management McGill University
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
10 Motivation for Performance Analysis Index funds  simply try to replicate performance of an 
Background image of page 10
Image of page 11
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 42

Lecture_08_09 - Professor Ruslan Goyenko...

This preview shows document pages 1 - 11. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online