131A_1_Lecture13-1_Winter_2012

# 131A_1_Lecture13-1_Winter_2012 - EE 131A Probability...

This preview shows pages 1–4. Sign up to view the full content.

UCLA EE131A (KY) 1 EE 131A Probability Professor Kung Yao Electrical Engineering Department University of California, Los Angeles Lecture 13-1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
UCLA EE131A (KY) 2 Distribution and pdf of (X+Y) (1) When we have two rv’s, X and Y, often they may interact in the form of (X + Y). Suppose we have the joint pdf f XY (x,y) of these rv’s. Denote Z = X + Y. We want to find the cdf F Z (z) and the pdf f Z (z) of Z. First, start with cdf F Z (z). We note, the above three integrals are not easy. But, how about the pdf f Z (z) ? Z z-y z-x XY XY XY x+y z x=- y=- y=- x=- F (z) = P(Z z) = P(X+Y z) = P(Y z-X) = P(X z-Y) = f (x,y)dxdy = f (x,y)dy dx = f (x,y)dx dy       
UCLA EE131A (KY) 3 Distribution and pdf of (X+Y) (2) The above two integrals are not easy either. Now, suppose X and Y are two independent rv’s. Use (2) in (1) The integrals of (3) and (4) are both convolutions!

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 02/29/2012 for the course ELECTRICAL 131a taught by Professor Yao during the Spring '12 term at UCLA.

### Page1 / 8

131A_1_Lecture13-1_Winter_2012 - EE 131A Probability...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online