Mathematic Methods HW Solutions 33

Mathematic Methods HW Solutions 33 - Chapter 7 33 8.11(a...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Chapter 7 33 8.11 (a) f (x) = (b) f (x) = ∞ ∞ π2 π2 (−1)n inx +2 e = +4 3 n2 3 −∞ n=0 ∞ 4π 2 +2 3 −∞ 1 iπ + n2 n (−1)n cos nx n2 1 4π 2 +4 3 einx = ∞ 1 n=0 8.12 (a) f (x) = = ∞ (−1)n (1 + in) inx e 1 + n2 −∞ sinh π π sinh π 2 sinh π + π π e2π − 1 (b) f (x) = 2π = ∞ (b) f (x) = 2 iπ −∞ n=0 ∞ −∞ n=0 ∞ 8 8.14 (a) f (x) = π ∞ 2 iπ 1 8.15 (a) f (x) = (b) f (x) = (c) f (x) = 8.16 f (x) = 1 − i π ∞ 1 (−1)n inπx/2 4 e =2+ n π ∞ ∞ 1 nπx (−1)n sin n 2 1 nπx sin n 2 1 ∞ 2 (−1) inπx e = n π 1 inπx 8 e =2 2 n π 1 n+1 sin nπx (−1) 1 odd n ∞ sin nπx 1 =1− n iπ 1 e2inπx −1 4 n2 −∞ ∞ 8 1 inπx e =3 n3 π −∞ odd n ∞ ∞ 2 cos 2nπx =− 2−1 4n π n −∞ odd n ∞ 1 1 1 (cos nx − n sin nx) 1 + n2 ∞ −4i π3 2 π ∞ n(−1)n+1 n(−1)n 2inπx 4i sin 2nπx = e 4 n2 − 1 π −∞ 4 n 2 − 1 −∞ n=0 ∞ 4 π2 1 (−1)n (cos nx − n sin nx) 1 + n2 4 1 inπx/2 e = n π 4 2 (b) f (x) = − π π ∞ ∞ 1 + in inx e 1 + n2 −∞ e2π − 1 1 + π 2 8.13 (a) f (x) = 2 + −∞ n=0 100 100 +2 3 π ∞ ∞ 1 100 = + 50 3 −∞ sin nπx . n3 1 inπx e n 1 nπx 100 cos − 2 n 5 π 1 1 − n2 π 2 inπ e . cos nπx . n2 1 odd n ∞ n 1 3 8.17 f (x) = 4 − π (cos πx − 1 cos 3πx + 1 cos 5πx · · · ) 2 3 2 5 2 1 + π (sin πx + 2 sin πx + 1 sin 3πx + 1 sin 5πx + 2 2 3 2 5 2 8.18 f (x) = cos nx − 4π n2 ∞ 1 2 6 sin 3πx · · · ) 1 nπx sin n 5 inπx/5 n=0 8.19 f (x) = 1 1 − 8 π2 ∞ 1 odd n 1 1 cos 2nπx + n2 2π ∞ 1 (−1)n+1 sin 2nπx n ∞ 1 sin nx n ...
View Full Document

This note was uploaded on 02/29/2012 for the course MHF 2312 taught by Professor Dr.chet during the Fall '11 term at UNF.

Ask a homework question - tutors are online