Mathematic Methods HW Solutions 63

# Mathematic Methods HW Solutions 63 - 2 2 2 2 7.21 ψn(x =...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Chapter 13 63 2 2 2 2 7.21 ψn (x) = e−α (x +y +z )/2 Hnx (αx)Hny (αy )Hnz (αz ), α = mω/¯ , h 1 1 1 3 En = (nx + 2 + ny + 2 + nz + 2 )¯ ω = (n + 2 )¯ ω. h h (n + 2)(n + 1) , n = 0 to ∞. Degree of degeneracy of En is C (n + 2, n) = 2 M e4 +1 2r 7.22 Ψ(r, θ, φ) = R(r)Ylm (θ, φ), R(r) = rl e−r/(na) L2l−l−1 na , En = − 2 2 n 2¯ n h 8.3 8.4 The second terms in (8.20) and (8.21) are replaced by al r l −qR/a −q Pl (cos θ) = R2l+1 l r2 − 2(rR2 /a) cos θ + (R2 /a)2 Image charge -qR/a at(0, 0, R2 /a) LetK = line charge per unit length. Then V = −K ln(r2 + a2 − 2ra cos θ) + K ln a2 − K ln R2 + K ln r2 + R2 a 2 −2 8.5 K at (a, 0), −K at (R2 /a, 0) 9.2 u= 9.4 200 u(x, t) = π R2 r cos θ a 9.7 200 π ∞ 0 k −2 (1 − cos 2k )e−ky cos kx dk ∞ 0 u(x, t) = 100 erf 10.1 T = ∞ 2 π 1 ∞ 1 − cos k −k2 α2 t e sin kx dk k x x−1 √ − 50 erf √ − 50 erf 2α t 2α t x+1 √ 2α t 1 sinh nπ (2 − y ) sin nπx n sinh 2nπ 2 1 10.2 T = sinh nπy sin nπx π 1 n sinh 2nπ 1 4 1 10.3 T = (2 − y ) + 2 sinh nπ (2 − y ) cos nπx 4 π n2 sinh 2nπ o dd n nπy 40 nπx 1 10.4 T = 20 + 3nπ sinh 5 sin 5 π n sinh 5 o dd n 1 40 nπ (5 − x) nπy sinh sin π 3 3 n sinh 5nπ 3 o dd n 80 1 −(nπα/l)2 t nπx 10.5 u = 20 − e sin π n l + o dd n ∞ 80 (−1)n −[(2n+1)πα/(2l)]2 t 2n + 1 e cos πx π n=0 2n + 1 2l 4 1 1 sinh nπy cos nπx 10.7 u = y + 2 2 sinh 2nπ 4 π n 10.6 u = 20 − o dd n 10.8 u = 20 − x − 40 π ∞ 2 even n 2 1 −(nπα/10)2 t nπx e sin n 10 8l nπvt nπx 1 cos sin 3 3 π n l l o dd n mπr mπz 1 1600 sin nθ sin In 10.10 u = 2 π nmI n (3mπ/20) 20 20 10.9 y = o dd n o dd m ...
View Full Document

## This note was uploaded on 02/29/2012 for the course MHF 2312 taught by Professor Dr.chet during the Fall '11 term at UNF.

Ask a homework question - tutors are online