set2-06-sol

Set2-06-sol - Astro 346 Spring Semester 2006 Homework 2nd set solutions Problem 1 Radiation transport a The optical depth is increased at the line

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Astro 346, Spring Semester 2006 Homework, 2nd set, solutions. Problem 1: Radiation transport a) The optical depth is increased at the line frequency, because the line adds its emission and absorption coeFcient to those of the continuum radiation processes. Any increase in the absorption coeFcient implies an increase in the optical depth. b) We are dealing with a thermal gas, so LTE applies and the source function S ν , is a Planckian. Consider the general solution to the radiation transport equation I ν ( τ ) = I ν (0) exp( - τ ) + Z τ 0 0 S ν ( τ 0 ) exp( - τ + τ 0 ) (8 . 9) If the source function is a constant and LTE applies (thermal particle distribution!), then S ν = B ν ( T ) and I ν ( τ ) = I ν (0) exp( - τ ) + B ν ( T ) [1 - exp( - τ )] ± I ν (0) + j ν s for τ ¿ 1 B ν ( T ) for τ À 1 (8 . 10) You can distinguish three cases: – The continuum optical depth is À 1 . One observes a Planckian. – The continuum optical depth is
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 02/29/2012 for the course PHYS 227 taught by Professor Rabe during the Fall '08 term at Rutgers.

Ask a homework question - tutors are online