&ccedil;&not;&not;05&ccedil;&laquo;&nbsp; &ccedil;&brvbar;&raquo;&aelig;•&pound;&aelig;—&para;&eacut

# ç¬¬05ç«  ç¦»æ•£æ—¶&eacut

This preview shows pages 1–6. Sign up to view the full content.

5.5 all-pass system （全通系统） |( ) | c o n s t a n t j ap He ω = An all-pass system is defined as a system for which the frequency-response magnitude is a constant 1* * 1 ** * () 1 / , 1 1( 1 ) ) | 1 11 1 j jj j j j za Hz a a r e az ea a e a e e e ae θ ωω −− == = = ，零点： 极点 EXAMPLE - (1 ) sin( ) arg[ ( )] arg{ } 2arctan{ } c o s ( ) j j ap er e e r re e r ωθ θω

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
= = = c r M k k k k k M k k k ap z e e z z e e z z d d z A z H 1 1 * 1 1 * 1 1 1 1 ) 1 ( ) ( ) 1 ( ) ( 1 ) ( The most general form for the system function of an all-pass system with a real-valued impulse response is Where A is a positive constant and the d k ’s are real, and the e k ’s are complex. Characters of poles and zeros: complex zeros and poles being paired with their conjugates. 零点和极点共轭反演 ; 若实系数，零点对互为共轭，极点对 互为共轭。
4/3 3/4 EXAMPLE Y Y Y N Determine whether or not each system is an all-pass system . z= ∞有零点 无穷远有零点

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
0 )] ( [ > ω j ap e H grd π < < < 0 , 0 )] ( arg[ for e H j ap () ' , | ( ) || ' ( ) | jj ap Hz H z H z He H e ωω == 用途： 1. 补偿相位失真 2. 与最小相位系统合作补偿幅度失真 ) ( ) ( ). ( min z H z H z H ap = 证明见教材 有相位失真 补偿相位失真 无相位失真 有幅度失真 补偿幅度失真 无幅度失真 5.5 节总结：全通系统无幅度失真，零点和极点共轭反演。 Properties of causal stable all-pass system
5.5 节 思考题 设因果 LTI 系统的差分方程是

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 17

ç¬¬05ç«  ç¦»æ•£æ—¶&eacut

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online