{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

zz-27 - Utah State University ECE 6010 Stochastic Processes...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Utah State University ECE 6010 Stochastic Processes Homework # 5 Solutions 1. Let X 1 ∼ U (0 , 1) and X 2 ∼ U (0 , 1) (independent). Let Y 1 = - 2 ln X 1 cos(2 πX 2 ) and Y 2 = - 2 ln X 1 sin(2 πX 2 ). Show that Y 1 ∼ N (0 , 1) and Y 2 ∼ N (0 , 1) Here we have, Y 2 1 + Y 2 2 = - 2 ln X 1 [(cos(2 πX 2 )) 2 + (sin(2 πX 2 )) 2 ] = - 2 ln X 1 Therefore, X 1 = e - Y 2 1 + Y 2 2 2 Also, Y 2 /Y 1 = tan(2 πX 2 ), therefore X 2 = 1 2 π tan - 1 ± Y 2 Y 1 ² Jacobian is given by J = " ∂x 1 ∂y 1 ∂x 1 ∂y 2 ∂x 2 ∂y 1 ∂x 2 ∂y 2 # Therefore, | J | - 1 = . . . = X 1 2 π Now, f Y 1 ,Y 2 ( y 1 , y 2 ) = | J | - 1 f X 1 ,X 2 ( x 1 , x 2 ) = X 1 2 π f X 1 ( x 1 ) f X 2 ( x 2 ) = 1 2 π e - Y 2 1 + Y 2 2 2 = 1 2 π e - Y 2 1 2 · 1 2 π e - Y 2 2 2 Y 1 ∼ N (0 , 1) and Y 2 ∼ N (0 , 1) 2. If X and Y are independent and Y ∼ U (0 , 1), show that Z = X + Y has density f Z ( z ) = F x ( z ) - F x ( z - 1). Here
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

Page1 / 3

zz-27 - Utah State University ECE 6010 Stochastic Processes...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon bookmark
Ask a homework question - tutors are online