220B_mid10_answers

220B_mid10_answers - 1 Econ 220B Winter 2010 Answers to...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
–1– Econ 220B, Winter 2010 Answers to midterm exam 1.) a.) E ( ˆ β 2 )= β 2 . b.) ε | X N ( 0 I T ) 2.) Let a ( µ )=1 and A ( µ )= ∂a ∂µ = 1 µ 2 . Then for ˆ µ T = T 1 P T t =1 y t by CLT T µ T µ ) L N (0 2 ) and from Hayashi Lemma 2.5 (the delta method) T [ a µ T ) a ( µ )] L N (0 , [ A ( µ )] 2 σ 2 ) . Hence v = σ 2 4 . But v 6 =l im T →∞ E ( q T µ 1 ) 2 because E ( q T ) does not exist. 3.) a.) b T = β + ³ X T t =1 x t x 0 t ´ 1 ³ X T t =1 x t ε t ´ T ( b T β )= ³ T 1 X T t =1 x t x 0 t ´ 1 ³ T 1 / 2 X T t =1 x t ε t ´ which converges in distribution to Q 1 times a N (0 2 Q ) variable, meaning T ( b T β ) L N ( 0 2 Q 1 ) . b.) Let R =(1 , 1 , 0 , 0 ,..., 0) . Then F =( b 1 b 2 ) s 2 R Ã T X t =1 x t x 0 t ! 1 R 0 1 ( b 1 b 2 ) c.) Note F = ( b 1 b 2 ) 2 s 2 R ¡P x t x 0 t ¢ 1 R 0 = h T R ( b β ) i 2 s 2 R ¡ T 1 P x t x 0 t ¢ 1 R 0 L h T R ( b β ) i 2 σ 2 RQ 1 R 0 .
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

Page1 / 2

220B_mid10_answers - 1 Econ 220B Winter 2010 Answers to...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online